APRIL 1990 QUARTERLY SAMPLING REPORT SOUTHERN CALIFORNIA CHEMICAL SANTA FE SPRINGS, CALIFORNIA

24-14-90

Prepared for:

SOUTHERN CALIFORNIA CHEMICAL 8851 Dice Road Santa Fe Springs, California 90670

Prepared by:

CAMP DRESSER & McKEE INC. 18881 Von Karman, Suite 650 Irvine, California 92715

June 19, 1990

SOUTHERN CALIFORNIA CHEMICAL

A DIVISION OF CP CHEMICALS, INC.

8851 DICE ROAD • SANTA FE SPRINGS, CALIFORNIA 90670-0118

June 21, 1990

Hank Yacoub California Regional Water Quality Control Board Los Angeles Region 101 Centre Plaza Drive Monterey Park, CA 91754-2156

Scott Simpson
Facilities Management
Toxic Substances Control Division, Region 3
Department of Health Services
1405 N. San Fernando Blvd., Suite 300
Burbank, CA 91504

Dear Messrs. Yacoub and Simpson:

Enclosed is the April 1990 quarterly sampling report for Southern California Chemical, Santa Fe Springs facility. The report includes results of analyses of water samples and water level measurements obtained April 9-13, 1990 from the on-site monitoring wells.

We trust the information in the report meets your needs at this time. Should you have any questions, please contact us.

Very truly yours,

E.E. Vigil

Environmental and Safety Manager

EEV: ca: RWQCBQTGW

Enclosure

cc: see following page

(213) 698-8036 • (213) 723-4614 • (714) 521-7960 • FAX (213) 698-1921

Messrs. Hank Yacoub and Scott Simpson April, 1990 Quarterly Sampling Report June 21, 1990

cc: James Breitlow, Permits Section Toxics and Waste Management Division U.S. Environmental Protection Agency, Region 9 1235 Mission Street San Francisco, CA 94103

1 1-11 1/2 1/2 1

Richard L. Griffith, Esq. Heller, Ehrman, White & McAuliffe 333 Bush Street San Francisco, CA 94104-2878

Gregor Otterbach, Vice-President Southern California Chemical 8851 Dice Road Santa Fe Springs, CA 90670

Wendy Reed, Project Manager (no enclosure) Camp Dresser & McKee Inc. 18881 Von Karman, Suite 650 Irvine, CA 92715

R.E. Torrance, Senior Vice-President CP Chemicals, Inc. One Parker Plaza Fort Lee, NJ 07024

TABLE OF CONTENTS

-		Page
1.0	INTRODUCTION	11
2.0	MONITOR WELL SAMPLING	. 2-1
	2.1 Sampling Procedure	2-4
	 2.1.1 Detection of Organic Vapors and Immiscible Layers 2.1.2 Purge Volume Determination 2.1.3 Ground Water Purging and Sampling 2.1.4 Sample Handling 	2-4 2-5 2-5 2-7
	2.2 Equipment Decontamination Procedures	2-7
	2.2.1 Sampling Pump/Lines Decontamination 2.2.2 Accessory Sampling Equipment Decontamination	2-8 2-9
3.0	LABORATORY TESTING	3–1
. 4.0	QUALITY CONTROL	4-1
	4.1 Duplicate Samples	4–1
	4.2 Spiked Samples	4-2
	4.3 Equipment Blank and Deionized Water Samples	4–6
	4.4 Travel Blanks	4-7
	4.5 Steam Cleaner Sample	4-7
	4.6 Sample Control	4–8
5.0	GROUND WATER ELEVATION	5–1
6.0	GROUND WATER QUALITY	6–1
	6.1 Site-Specific Indicator Parameters	6–1
	6.2 Organic Compounds	6-9
7.0	ASSESSMENT QUARTERLY GROUND WATER MONITORING PROGRAM STATUS	7–1
8.0	REFERENCES	8-1
	APPENDIX A - FIGURES APPENDIX B - HISTORIC GROUND WATER ANALYSES DATA APPENDIX C - ATI ANALYTICAL REPORTS APPENDIX D - WCAS ANALYTICAL REPORTS APPENDIX E - COMPLETED COC FORMS	

LIST OF TABLES

•	Table		rage
	2–1	SCC Ground Water Monitoring Program	2-2
•	4–1	Purgeable Halocarbons Analytical Results Quality Assurance Samples	4 –3
•	4–2	Purgeable Aromatics Analytical Results Quality Assurance Samples	4–4
•	4–3	Metals, Nitrate and Chloride Analytical Results Quality Assurance Samples	4-5
	5–1	Ground Water Elevation Data	5-2
1	6–1	Purgeable Halocarbons Analytical Results Monitor Well Samples	6–2
•	6–2	Purgeable Aromatics Analytical Results Monitor Well Samples	6–3
•	6–3	Metals, Nitrate and Chloride Analytical Results Monitor Well Samples	6-4
	6-4	Selected Wells/Parameters Comparison	6-5

1.0 INTRODUCTION

This report summarizes the sixteenth RCRA quarterly ground water monitoring sampling and analyses period at Southern California Chemical (SCC), Santa Fe Springs, California. Contained herein are the results of laboratory analyses of ground water samples and water level measurements obtained during the period April 9 to April 13, 1990.

The purpose of the ground water sampling program, which began in February 1985, is to monitor ground water quality and establish a database of the compounds in the ground water beneath the site. The primary goals of the program are (a) to assess the location and concentration of chromium and cadmium contamination, (b) to detect and evaluate water quality changes, and (c) to characterize background water quality.

In addition to the data obtained during the April 1990 sampling, this report contains plot plans showing contaminant distribution (Appendix A) and a summary of all previous sampling data (Appendix B). Copies of the original laboratory results are included in Appendices C and D. Chain-of-custody records for the April 1990 sampling are included in Appendix E.

2.0 MONITOR WELL SAMPLING

Ground water sampling, utilizing existing on—site monitoring wells, was conducted by CDM field personnel during the period of April 9 to April 13, 1990. Field activities were performed in general accordance with the ground water sampling protocol as outlined in Section 4.3.3 of the unapproved, RCRA Facility Investigation (RFI) Work Plan (CDM, June 1990). Prior to the submittal of the RFI Work Plan for regulatory agency review and approval, the unapproved Kleinfelder Quality Assurance Project Plan (QAPP, May 1988) was used as the primary ground water sampling guidance document.

Twelve monitor wells were sampled as part of this program (Figure A-1, Appendix A). Of these, 11 are screened in the upper portion of the Hollydale aquifer. The 12th well, MW-4A, is screened in the lower portion of the Hollydale aquifer. An additional monitoring well, MW-06A, historically has not been sampled for ground water analysis since it is a dry well. The well is screened in the lower portion of the uppermost aquifer, the Gage Aquifer, which is dry below the site.

As outlined in the Kleinfelder QAPP, certain analyses have been performed on a quarterly schedule, while others have recently been done on a biannual schedule, coinciding with quarterly sampling (effective September 1988). Ground water sampling, utilizing monitoring wells MW-1 through MW-6B, was initiated at the site by J. H. Kleinfelder and Associates (Kleinfelder) at the end of February, 1985. Six additional wells (MW-4A and MW-7 through MW-11) were installed at the site in July 1985, thereby increasing the total number of active wells to 12. Quarterly sampling of all 12 wells was initiated in March 1986. Commencing with the January 1989 sampling event, Camp Dresser & McKee Inc. (CDM) has been responsible for all ground water monitoring activities at the facility. A detailed listing of analytical parameters per sampling event has been provided in Table 2-1.

As in the past, the Regional Water Quality Control Board (RWQCB), and California Department of Health Services (DHS) were notified prior to commencement of sampling activities and were provided the opportunity to observe sampling and to collect duplicate and/or split samples. No

TABLE 2-1

SCC GROUND WATER MONITORING PROGRAM

				SCC GROUND	MATER MONTH	TKTING BUTCH	Am		
Sampling Event	Appendix g III Parameters	Water Quality Parameters	Indicators Parameters	Cd, Cr Cu, Zn	Hexavalent Chromium	Chloride	Nitrate	Volatile Organics	Comments
3/85	X (includes Cd & total Cr)	X	QUAD	Cu&ZN*	Х*	x	х*	_	Sampled wells MW1,2,3,4, 5,&6B. Sulfide, nickel and * requested by DOHS and RWQCB.
7/85	_	_	QUAD	Cd,Cr	x	_	x	_	Sampled wells MW-4A,7,8,9, 10 and 11.
.3/86	x	х	QUAD	Cu&Zn	x	x	x	_	Sampled 12 wells (MW1,2, 3,4,4A,5,6B,7,8,9,10 and 11).
7/86			QUAD	x	x	x	x	624	Sampled all 12 wells (as previous).
9/86	_		QUAD	x	x	x	x	624	H H H H H H
12/86	_		QUAD	x	x	x	x	624	11 H H H H H H
3/87			QUAD	x	x	x	x	601/602	Sampled 11 wells, not 4A
7/87	_		QUAD	x	x	x	x	601/602	After July 1987, all 12 wells were sampled during each event.
10/87		_	QUAD	x	x	x	x	601/602	
2/88	_	_	QUAD	x	x	x	x	601/602	
6/88	_	_	X (not QUAD)	x	х	X .	x	601/602	Performed statistical analysis (t-test) on Indicator Parameters (IPs).

t t

ı

1. (

1 1

.

•

a :

TABLE 2-1
SCC GROUND WATER MONITORING PROGRAM

Sampling Event	Appendix III Parameters	Water Quality Parameters	Indicators Parameters	Cd, Cr Cu, Zn	Hexavalent Chromium	Chloride	Nitrate	Volatile Organics	Comments
9/88		_	_	X	x	x	x	601/602	IPs & volatile organics from MW1, 2,4A, 5, 6, 7 analyzed semi—annually in June/Dec.
1/89			QUAD	х	х	х	x	601/602	After January 1989, volatile organics analyzed for all 12 wells.
4/89		-	 .	x	x	x	x	601/602	
7/89	_	_	QLAD	x	х	х	X	601/602	Performed statistical analysis of January through July 1989 data (IPs, total and hexavalent chromium).
10/89	-	-	_	x	х	x	x	601/602	
1/90	_	_	QUAD	x	x	х	x	601/602	
4/90	_			x	x	x	x	601/602	

Appendix III Parameters - As, Ba, Cd, Cr, F, Pb, Hg, N, Se, Ag, Endin, Lindane, Methoxychlor, Toxaphene, 2,4,D, 2,4,5TP (Silvex), Radium, Gross Alpha & Beta, turbidity, coliform bacteria

Water Quality Parameters. - Cl, Fe, Mn, Phenols, Na, SO,

Indicator Parameters (IP) - TOX, TOC, pH, EC

624 = Volatile organics analysis

601/602 - Purgeable halocarbons/aromatics analysis

representatives from either agency were present at any time during sampling. In addition to these agencies, EPA was also notified of the sampling program. Similarly, no representatives from that agency were present at anytime during sampling.

2.1 Sampling Procedure

To ensure continuity with previous quarterly samplings, field sampling and decontamination procedures, as detailed in the RFI Workplan, were based on procedures established by Kleinfelder in their unapproved QAPP with some minor modifications. Sampling practices included efforts to detect floating product and hydrocarbon vapors at each well, measurement of the static water level and total depth of each well for calculating pre-sampling evacuation volumes, purging and sampling of ground water for laboratory analysis, decontamination of sampling equipment, and correct handling of sample containers. Deviations from the Kleinfelder QAPP were generally limited to implementation and decontamination of the submersible sampling pump systems. This was necessitated by a change in design of the pump system beginning with the April 1989 sampling period. Details of these deviations have been discussed in prior Quarterly Sampling Reports.

2.1.1 Detection of Organic Vapors and Immiscible Layers

Due to the known presence of organic compounds in the ground water in the Hollydale aquifer, efforts were made to determine if organic well vapors and immiscible floating product layers could be detected in the field. Prior to opening a monitor well for sampling, the air immediately above the well was monitored for organic vapors through the use of a photoionization detector (PID) equipped with a 10.0 eV lamp. The head space of each well was checked for volatile organic vapors by inserting the intake tube of the PID into the well head immediately after removing the monitoring well security plate and opening the casing cap. The maximum and average reading values for each well were recorded in the field log book.

The depth to static water level was measured to the nearest 0.01 foot using a decontaminated electric water level sounder. These data were subsequently

input in calculations for determining wetted casing volumes and for use in determining ground water elevations at the facility.

A decontaminated, 2-inch diameter, clear teflon bailer, equipped with a bottom ball-check valve, was lowered and immersed into the ground water approximately half its length and brought up to the surface. Although none were observed, field personnel were prepared to record the thickness of floating product or note any iridescence on the water surface.

2.1.2 Purge Volume Determination

The total depth of each monitoring well was measured by lowering the water level sounder line until the sounder weights could be felt contacting the well bottom. This value was compared with the total depth of the well casing, as it had been constructed, to determine the amount of sediment fill present in each well. One wetted casing volume was then calculated by using the following formula:

 $1v = \pi \times r^2 \times L$

where: 1v = one wetted casing volume

L = length of wetted casing

 $\pi = 3.142$

r = inside radius of the casing

2.1.3 Ground Water Purging and Sampling

A decontaminated 40-inch bladder pump consisting of a teflon bladder fitted inside a stainless steel pump body was lowered to the approximate middle of the wetted, open screened casing of each well, where feasible. Coaxial tubing wherein the sample discharge line was encased within the air supply line has been used in previous sampling events and was used on all wells during the April 1990 sampling except for Well MW-5. Because of a leaking air supply line, the coaxial tubing on one of the pumps was replaced with separate teflon-coated air supply and sample discharge lines which were used on Well MW-5 only. To ensure quality control on decontamination of the assembly, all tubing surfaces coming into contact with the ground water were teflon-coated. In addition, the 4-inch diameter wells

(MW-4A and MW-9) were evacuated more effectively and efficiently by using the bladder pump's ability to be extended from a 40-inch to a 72-inch assembly and used as an air lift pump. A reduction to the 40-inch bladder assembly and final well evacuation was done prior to extracting samples for laboratory analysis.

Field parameters (pH, specific conductance [EC], temperature, salinity, and visual characteristics) were monitored and recorded at appropriate intervals during the purging of ground water from each well. Prior to evacuating the ground water, the EC and pH meters were calibrated and checked with appropriate calibration solutions. Ground water was purged until the parameters had stabilized and a minimum of three saturated well casing volumes had been evacuated. All purge water collected from each well was contained and labeled in SCC-supplied 55-gallon barrels for treatment and disposal by SCC at the on-site wastewater treatment facilities.

Ground water samples were discharged directly into previously labeled sample bottles which were then placed inside plastic zip-lock baggies and placed in an ice-cooled chest. Samples for metals analyses (cadmium, copper, zinc and total chromium [Cd, Cu, Zn and Cr, respectively]) are usually field filtered with a sterile, 0.45-micron, in-line filter as the appropriate bottles are filled. During the first two days of the April sampling, however, metal samples were not field filtered, but were lab-filtered instead (Wells MW-1, -2, -3, -4, and -11). The samples were field filtered the last two days of sampling. Precautions were taken to ensure that no headspace or bubbles were present in sample vials for volatile organic compound analysis.

Ground water samples were collected in the following sequence as determined in the Kleinfelder QAPP:

- o EPA Method 601/602
- o Metals (Cd, Cu, Zn, Cr)
- o Hexavalent Chromium
- o Chloride/Nitrate

Ground water sample bottles were numbered using the following format:

```
(e.g.) SCC-MW01-007
```

Where:

```
SCC - designates site acronym
MW01 - designates sample location number (MW = Monitoring Well)
EB - designates equipment blank sample
SP - designates spiked samples
TB - designates travel blanks
DIW - designates de-ionized water sample
007 - designates sequential sample number (per sampling event)
```

This was the sixth round of sampling conducted by CDM, however, since a 003 sequence number had been assigned to several quality assurance samples during the April 1989 sampling event, a 007 sequence number was assigned to all ground water samples collected during this round. Sample label information included date and time of sampling, CDM sample number, and analytical parameters.

2.1.4 Sample Handling

All sample containers that were collected from each well were accompanied by chain-of-custody forms that indicated the label information as well as the responsible person during each step of the transportation process. All samples were hand-delivered to the appropriate laboratories on the day that they were collected, and a copy of the chain-of-custody for that day was retained by CDM field personnel. The laboratories were notified at the time of delivery that one or more Cr(VI) sample(s) were contained in the shipment to ensure that the samples would be analyzed within the prescribed 24-hour holding period.

2.2 Equipment Decontamination Procedures

The following sections describe the procedures utilized to decontaminate ground water sampling equipment.

2.2.1 Sampling Pump/Lines Decontamination

The bladder pump assembly and coaxial tubing were decontaminated to reduce the possibility of cross-contamination between monitoring wells. The first step in the decontamination procedure was to submerge the pump assembly into a decontaminated polyvinyl chloride (PVC) tube containing a soap (Alconox, laboratory-grade detergent) and water mixture and pump at least 2 gallons through the system. The PVC tube was then rinsed and filled with tap water, the pump assembly was once more submerged and at least 2 gallons was pumped through the system.

The final decontamination step was accomplished by submerging the pump into a decontaminated PVC tube containing DIW and pumping approximately 5 gallons of DIW through the system. During the collection of equipment blanks, an additional five gallons of DIW were pumped. A sample of the DIW was taken to perform confirmation analyses for comparison in the event of anomalous laboratory results.

This decontamination method differs from previous decontamination methods in which the steam cleaner was attached directly to the pump assembly via a quick coupler and the interior of the pump and discharge line were steam cleaned. Due to the high temperatures involved and subsequent distortion and failure of the teflow bladders, the soap and water wash followed by a tap water rinse and final DIW rinse was substituted.

The exterior of the discharge and air supply tubing was steam cleaned as well as the exterior of the reel holding the coaxial tubing. The decontamination of the exterior pump line was performed over a plastic waterproof tarp. The tarp was placed on a gently sloping surface and bermed up at the lower edges, allowing the decontamination water to flow away from the equipment being cleaned. The spent water was recovered and stored in 55-gallon drums for treatment by SCC in the facility's wastewater treatment system.

2.2.2 Accessory Sampling Equipment Decontamination

Accessory sampling equipment such as the teflon bailer and the water level sounder were decontaminated to prevent cross-contamination between the monitoring wells. The bailer and water level sounder were decontaminated first by washing in a bucket of soap and water, followed by a tap water rinse, followed by a final DIW rinse. Steam cleaning was not used on the bailer because, as mentioned in previous reports, the high temperatures would have deformed the bailer.

3.0 LABORATORY TESTING

Two laboratories were utilized as a quality control measure intended to ensure the accuracy of the laboratory analyses performed on the ground water samples. Analytical and duplicate testing was provided by Analytical Technologies, Inc. (ATI), San Diego, California. West Coast Analytical Service (WCAS) of Santa Fe Springs, California prepared spike samples that were submitted to ATI for assessment of analytical consistency. Spike sample preparation and analysis is discussed in Section 4.2.

During the April quarterly sampling event, a total of 23 water samples were submitted for laboratory analysis. Seventeen samples consisting of 12 monitor well (MW) samples, two duplicate monitor well samples (MW-04 and 10), and two equipment blanks (EB) were collected and submitted to ATI for analysis of purgeable halocarbons/ aromatics (601/602), cadmium, total and hexavalent chromium, copper, zinc, chloride and nitrate. A sample of the deionized water (DIW) used to make up the equipment blanks and for decontamination purposes was also submitted for analysis of the above parameters. Four travel blanks (TB) were also submitted to ATI for analysis of purgeable halocarbons/ aromatics. WCAS prepared a spiked sample (SP) for analysis of purgeable aromatics and metals by both ATI and WCAS.

The April 1990 ground water analytical results are discussed in Section 6.0 and summarized in Tables 6-1 through 6-3. Quality assurance analytical results (duplicates, equipment blanks, travel blanks, and spiked samples) are discussed in Section 4.0 and summarized in Tables 4-1 through 4-3. Historical Kleinfelder and CDM ground water analytical data are summarized in Appendix B. Individual analytical reports for April 1990 are located in Appendices C and D. Chain-of-custody records are located in Appendix E.

4.0 QUALITY ASSURANCE

To verify the accuracy and validity of analytical data resulting from laboratory testing, certain quality assurance procedures were implemented. These procedures included the use of duplicate samples, spiked samples, equipment blanks, travel blanks, and the use of chain-of-custody forms.

4.1 Duplicate Samples

Duplicate ground water samples from two of the twelve monitoring wells were submitted to ATI for analysis. Several procedural changes in QA protocols were implemented during the July 1989 sampling event. Prior to July 1989, up to four duplicate samples per sampling event had been submitted to the laboratory, with the collection of 1 duplicate sample to every three monitor well samples. Standard accepted practice is to submit one duplicate sample for every tenth sample, a ratio of 1 to 10. The previous frequency was determined to be excessive and was revised to reflect current accepted practice. All other subsequent duplicate samples have been collected at the 1 in 10 frequency.

Another change made during the July 1989 sampling event was the submittal of the monitor well samples and duplicate samples to only one laboratory. Previous sampling and analysis utilized a second laboratory to perform duplicate testing. Again, standard practice is to send duplicate samples to the laboratory performing the primary analysis, as a check on the laboratory's precision. During the April 1989 sampling, ENSECO was the primary laboratory, with CKY utilized to perform duplicate testing. It was not possible to resolve discrepancies and inconsistencies which existed in the duplicate analytical results because it could not be determined which analytical data was erroneous. For this reason, it was decided to submit all subsequent monitor well and duplicate samples to the same laboratory. ATI was used for the January 1990 sampling event.

During the April 1990 round of sampling, two duplicate samples were collected from monitoring wells MW-4 and MW-10. The duplicate samples from

wells MW-10 and MW-4 were submitted to the analytical laboratory as blind samples, and were designated MW-30 and MW-31, respectively, on the Chain of Custody forms. Monitor well MW-4 was selected because it generally yields the poorest quality ground water, and MW-10 was selected because of the detection of elevated levels of several purgeable halocarbon/aromatic compounds during the previous January 1990 sampling event. The results of the duplicate analyses have been compiled in Tables 4-1 through 4-3.

For both duplicate samples without exception, where purgeable halogenated/ aromatics, metals and other compounds were detected in the original sample, those same compounds were also detected in the duplicates. Purgeable halogenated compounds detected in the duplicate sample collected from MW-4 ranged from 6.7 (chloroform) to 28.5 (1,1-dichloroethene) percent greater than the original sample for an average difference of +14.6 percent. As shown in Table 5-1 of the RFI Work Plan, duplicate values which occur in the range ± 20 percent are acceptable. When comparing duplicate purgeable halocarbon results to the original results for Well MW-10, they are not in as close agreement, with duplicate results ranging from 104 percent greater than (1,1-dichloroethane) to 11 percent less than (1,1-dichloroethene) the original.

Ethylbenzene was detected in both the original and duplicate samples from Well MW-10 at concentrations of 200 and 170 μ g/kg, respectively. The duplicate result, therefore, was 15 percent less than the original, well within the acceptable range noted previously. Duplicate metals, chloride and nitrate results for both wells were also well within the acceptable range with variations ranging from -4 percent (total chromium, MW-4) to +5.1 percent (chloride, MW-10). With the exception of the 1,1-dichloroethane results from MW-10, therefore, the duplicate results were in fairly close agreement.

4.2 Spiked Samples

Two sets of spiked samples were prepared by WCAS for analysis of purgeable aromatics, cadmium, chromium (total and hexavalent), copper and zinc. One

TABLE 4-1 SOUTHERN CALIFORNIA CHEMICAL **APRIL 1990 QUARTERLY SAMPLING** PURGEABLE HALOCARBONS ANALYTICAL RESULTS **QUALITY ASSURANCE SAMPLES**

COMPOUND	DIW01	EB01	EB02	MW04	MW04 (DUP)	MW10	MW10 (DUP)	TB01	TB02	TB03	TB04
Bromodichioromethane	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	< 0.20	< 0.20	< 0.20	< 0.20
Bromoform	< 0.50	< 5.00	< 1.00	< 20.00	< 20.00	< 5.00	<1.00	<1.00	< 1.00	< 0.20	< 0.20
Bromomethane	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	< 0.20	< 0.20	< 0.20	< 0.20
Carbon Tetrachloride	<0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	< 1.00	< 0.20	< 0.20	< 0.20	< 0.20
Chiorobenzene	< 0.50	<2.50	< 0.50	< 10.00	< 10.00	<2.50	<2.50	< 0.50	< 0.50	< 0.50	< 0.50
Chloroethane	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	<0.20	< 0.20	< 0.20	< 0.20
Chloroform	< 0.20	<1.00	< 0.20	6.00	6.40	<1.00	<1.00	< 0.20	< 0.20	< 0.20	< 0.20
Chioromethane	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	<0.20	< 0.20	< 0.20	< 0.20
Dibromochioromethane	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	< 0.20	< 0.20	< 0.20	< 0.20
1,2-Dichlorobenzene	< 0.50	<2.50	< 0.50	<10.00	< 10.00	<2.50	<2.50	< 0.50	< 0.50	< 0.50	< 0.50
1,3-Dichlorobenzene	< 0.50	<2.50	< 0.50	< 10.00	< 10.00	<2.50	<2.50	< 0.50	< 0.50	< 0.50	< 0.50
1,4-Dichlorobenzene	< 0.50	<2.50	< 0.50	< 10.00	< 10.00	<2.50	<2.50	< 0.50	< 0.50	< 0.50	< 0.50
Dichlorodifluoromethane	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	< 0.20	< 0.20	< 0.20	< 0.20
1,1-Dichloroethane	< 0.20	< 1.00	< 0.20	67.00	78.00	4.90	10.00	< 0.20	< 0.20	< 0.20	< 0.20
1,2-Dichloroethane	< 0.20	<1.00	< 0.20	140.00	160.00	90.00	120.00	< 0.20	< 0.20	< 0.20	< 0.20
1,1-Dichloroethene	< 0.20	< 1.00	< 0.20	35.00	45.00	5.60	5.00	< 0.20	< 0.20	< 0.20	< 0.20
1,2 Dichloroethene (Total)	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	< 0.20	< 0.20	< 0.20	< 0.20
1,2-Dichloropropane	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	< 0.20	< 0.20	< 0.20	< 0.20
cis-1,3-Dichloropropene	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	< 0.20	< 0.20	< 0.20	< 0.20
trans-1,3-Dichloropropene	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	< 0.20	< 0.20	< 0.20	< 0.20
Methylene Chloride	<2.00	<10.00	< 2.00	54.00	58.00	<10.00	<10.00	<2.00	< 2.00	< 2.00	< 2.00
1,1,2,2-Tetrachioroethane	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	< 0.20	< 0.20	< 0.20	< 0.20
Tetrachioroethene	<0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	< 1.00	< 0.20	< 0.20	< 0.20	< 0.20
1,1,1-Trichioroethane	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	< 0.20	< 0.20	< 0.20	< 0.20
1,1,2-Trichloroethane	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	< 0.20	< 0.20	< 0.20	< 0.20
Trichloroethene	< 0.20	<1.00	< 0.20	280.00	320.00	93.00	87.00	< 0.20	< 0.20	< 0.20	< 0.20
Trichiorofluoromethane	<2.00	<10.00	< 2.00	< 40.00	< 40.00	<10.00	<2.50	<2.00	< 2.00	< 2.00	< 0.50
Vinyl Chloride	< 0.20	<1.00	< 0.20	< 4.00	< 4.00	<1.00	<1.00	<0.20	< 0.20	< 0.20	< 0.20

Note: All results in micrograms per liter (ug/l)
Laboratory analysis performed by ATI.

< Denotes non-detection at indicated detection limit

DIW≖De-ionized Water EB=Equipment Blank TB=Travel Blank MW=Monitor Well MW(Dup)=Monitor Well (Duplicate)

TABLE 4-2 SOUTHERN CALIFORNIA CHEMICAL APRIL 1990 QUARTERLY SAMPLING PURGEABLE AROMATICS ANALYTICAL RESULTS QUALITY ASSURANCE SAMPLES

COMPOUND	DIW01	EB01	EB02	MW04	MW04 (DUP)	MW10	MW10 (DUP)	TBO1	TBO2	TBO3	TBO4	WCAS	SP01
Benzene	< 0.50	< 2.50	< 0.50	< 10.00	< 10.00	< 2.50	< 2.50	< 0.50	< 0.50	1.40	1.90	84.00	98.00
Ethylbenzene	< 0.50	< 2.50	< 0.50	< 10.00	< 10.00	200.00	170.00	< 0.50	< 0.50	< 0.50	0.80	72.00	110.00
Tolulene	< 0.50	< 2.50	< 0.50	< 10.00	< 10.00	< 2.50	< 2.50	< 0.50	< 0.50	3.60	11.00	75.00	101.00
Xylenes, Total	< 1.00	< 5.00	< 1.00	< 20.00	< 20.00	< 5.00	< 2.50	< 1.00	< 1.00	1.40	3.60	142.00	200.00

Note: All results in micrograms per liter (ug/l) < Denotes non-detection at indicated detection limit Laboratory analysis performed by ATI, with the exception of WCAS which was the spiked sample prepared and analyzed by West Coast Analytical Service.

DIW=De-ionized Water EB=Equipment Blank MW=Monitor Well MW(Dup)=Monitor Well (Duplicate)

TABLE 4-3 SOUTHERN CALIFORNIA CHEMICAL JANUARY 1990 QUARTERLY SAMPLING METALS, CHLORIDE AND NITRATE ANALYTICAL RESULTS QUALITY ASSURANCE SAMPLES

COMPOUND	DIW01	EB01	EBO2	MW04	MW04 (DUP)	MW10	MW10 (DUP)	WCAS	SP01
Cadmium	< 0.005	< 0.005	< 0.005	0.13	0.13	< 0.005	< 0.005	0.50	0.54
Chromium, Hexavalent	< 0.02	< 0.02	< 0.02	81.70	82.30	< 0.02	< 0.02	0.94	0.91
Chromium, Total	< 0.01	< 0.01	< 0.01	80.70	77.60	< 0.01	< 0.01	4.50	4.80
Copper	0.04	< 0.02	< 0.02	=0.02	= 0.02	< 0.02	< 0.02	1.40	1.50
Zinc	< 0.01	0.02	0.02	< 0.01	< 0.01	< 0.01	< 0.01	2.70	3.10
Chloride	< 2.00	< 2.00	5.00	1000.00	1020.00	195.00	205.00	NA	N A
Nitrate (Nitrogen)	< 0.05	< 0.05	< 0.05	< 0.20	< 0.20	< 0.05	< 0.05	N A	NA

Note: All results in milligrams per liter (mg/l) < Denotes non-detection at indicated detection limit

Denotes non-detection at indicated detection limit
 Denotes compound concentration is equal to the detection limits

Laboratory analysis performed by ATI, with the exception of WCAS which was the spiked sample prepared and analyzed by West Coast Analytical Service.

NA= Not Analyzed

set of spiked samples (SP-01) was submitted to ATI as a QA/QC check. WCAS also analyzed a set (WCAS) in order to verify the spiked concentrations of their prepared samples. The results have been tabulated in Tables 4-2 and 4-3. Percent recoveries for ATI were generally within acceptable ranges, ranging from 117 to 153 percent for BTEX compounds, and from 97 to 115 percent for the five metals. According to Table 5-1 of the RFI Workplan, acceptable recovery values range from 77 to 123 percent for purgeable aromatics, 75 to 124 percent for hexavalent chromium, 61 to 126 percent for total chromium and cadmium, 78 to 114 percent for copper, and 68 to 120 percent for zinc.

4.3 Equipment Blank and Deionized Water Samples

Two equipment blanks were collected in order to verify that cross-contamination between wells did not occur during sampling. The equipment blank was obtained by pumping deionized water through the decontaminated sample pump and lines. The samples were collected in the appropriate containers and submitted for laboratory analysis. One equipment blank was collected from each sampling pump immediately after decontamination was completed. Sample EB-01 was collected after sampling well MW-11, and EB-02 was collected after sampling well MW-6B. Equipment blanks were submitted to the laboratory for analysis of purgeable halocarbons/ aromatics, cadmium, chromium (total and hexavalent), copper, zinc, chloride and nitrate. In addition, a sample was collected from the deionized source water used for decontamination. The DIW sample was also analyzed for the parameters noted above.

During the April 1990 sampling, no purgeable halocarbons were detected in EB-1, EB-2, or the DIW samples. Trace levels (0.02 mg/l) of zinc were detected in both equipment blanks. Because 0.02 mg/l is barely above the detectable limit of .01 mg/l, this is not indicative of a cross-contamination problem. Copper was detected in the DIW sample, but this again was barely above the detection limit. Because copper has rarely been present in detectable amounts in samples, it is unlikely a source of contamination and does not indicate a problem. Chloride was detected in EB-2 at 5.00 mg/l. Because the detection limit is 2.00 mg/l and chloride is usually

detected at much higher levels in monitoring well samples, this does not indicate a contamination problem.

4.4 Travel Blanks

The detection of compounds in travel blanks is generally indicative of systematic contamination from sample transport, laboratory glassware cleaning, laboratory storage, or analytical procedures. For each day of sampling, one laboratory prepared travel blank consisting of organic-free water was labeled and submitted for purgeable halocarbon and aromatic volatile organic analysis by EPA Methods 601/602. Tables 4-1 and 4-2 show the results of travel blank analyses. Each travel blank was stored with the days' samples to be analyzed for volatile organic compounds. An examination of the tables reveals that no purgeable halocarbon compounds were detected in any of the four travel blanks. No purgeable aromatic compounds were detected in TB-1 or TB-2, however, benzene, toluene, and xylenes were detected in TB-3 and TB-4, and ethylbenzene was detected in TB-4. Because these compounds were not detected in monitor well samples submitted to the lab the same days, it is unlikely that these compounds were introduced during transport from SCC to the laboratory. ATI was contacted on this subject and could offer no explanation for the detection of these compounds in the travel blanks. Although it cannot be proven, it would appear that TB-3 and TB-4 were somehow contaminated with the purgeable aromatic compounds while in the custody of ATI. It is also possible that the organic-free source water used to make the travel blanks could have been contaminated with these compounds.

4.5 Steam Cleaner Sample

During the three sampling events prior to October 1989, a sample was collected from the steam cleaner in order to verify that the rental equipment was not a source of contamination. Steam cleaner samples were obtained from the end of the discharge nozzle and were analyzed for purgeable halocarbons/aromatics, cadmium, chromium (total and hexavalent), copper, zinc, chloride and nitrate. An evaluation of the historical steam cleaner data verified that the rental unit was not a source of contamina—

tion. Therefore, starting with the October 1989 sampling, the collection of a steam cleaner sample for analysis was discontinued. In the event that the quality of the water discharged from the steam cleaner during subsequent rounds is suspect, additional samples will be collected as appropriate.

4.6 Sample Control

All samples were labeled immediately prior to sampling with a waterproof pen. Samples were transported under chain-of-custody and hand delivered by CDM personnel to the laboratories in ice-cooled chests. Copies of the chain-of-custody records are included in Appendix E.

SCC11:16

5.0 GROUND WATER ELEVATION

Prior to the initiation of well evacuation procedures, the depth to ground water was measured in each monitoring well. Ground water elevations were calculated by subtracting the depth to static water level from the surveyed elevation of the corresponding monitor well. The elevation of the ground water surface increased at each well since the previous January 1990 Quarterly Sampling. This increase ranged between 1.57 and 2.14 feet, with an average increase of 1.77 feet. During the previous January sampling, an average 0.96 foot increase in ground water elevation was noted. As has been observed during prior sampling events, no water was detected in monitoring well MW-06A which is screened in the Gage formation.

Figure A-1 shows the location of each monitoring well. In previous reports the location of MW-4 was incorrectly shown as the location of MW-4A. The figures in this report reflect this correction. Table 5-1 lists the depths to water and ground water elevations for each well. Figure A-2 shows the approximate ground water surface elevation of the Upper Hollydale Aquifer. The contours were drawn based on a three- point solution using wells MW-1, MW-5 and MW-6B. The elevation for deep well MW-4A was not included on the figure. An examination of the ground water elevation at each well location illustrates that the majority of the data points fall within the appropriate ground water elevation contours as drawn.

In several instances (MW-2, MW-4 and MW-8), the data points do not "fit" within the contour lines as well as would be expected. The field notes were checked and no obvious errors were found. As stated in previous quarterly sampling reports, apparent discrepancies could potentially be attributable to user error in measuring the water depths in wells or to an erroneous data base of casing elevations. During the October and January sampling, MW-02, MW-8, and MW-4 were found to not "fit" within the contour lines. At this point, expectations are that all existing wells will be resurveyed when new wells are installed during the forthcoming RCRA Facility Investigation. During the previous sampling event, the direction of ground water flow was approximately S 37° W at a gradient of 0.4 foot per 100 feet. As shown on Figure A-2 in Appendix A, the gradient and

TABLE 5-1

GROUND WATER ELEVATION DATA
APRIL 1990 QUARTERLY SAMPLING
SOUTHERN CALIFORNIA CHEMICAL

Well No.	Well Headspace* (ppm)	Total Depth Constructed (ft)	Total Depth Measured (ft)	Casing Fill (ft)	M.P. Elevation (ft)	Depth to Water (ft below M.P.)	G.W. Elevation (ft)
1	0	62.5	62.35	0.15	152.60	53.30	99.30
2	33	74.0	70.32	3.68	151.56	53.5	98.06
3	53	75.0	71.36	3.64	151.62	53.90	97.72
4	49	75.0	68.2	6.8	149.76	52.26	97.50
4a	8	107.0	108.7	0	152.49	54.62	97.87
5	13	75.0	73.3	1.7	153.21	56.14	97.07
6 a	0	30.0	29.1	0.9	149.31	dry	dry
6b	NR	77.0	74.9	2.1	149.46	51.70	97.76
7	35	75.0	75.4	0	149.27	51.95	97.32
8	4.9	71.0	69.70	1.3	149.53	52.02	97.51
9	45	77.0	73.6	3.4	151.14	52.88	98.26
10	76	75.0	74.10	0.9	151.60	53.50	98.1
11	56	75.5	74.68	0.82	152.80	54.36	98.44

NR = No Reading

M.P. = Measuring Point (well head)

G.W. = Groundwater

* = Measured with PID prior to sampling

the direction of ground water flow have remained unchanged during the April 1990 sampling.

Of the 12 ground water monitoring wells completed in the Hollydale Aguifer, 10 are perforated in the approximate interval from 45 to 75 feet below ground surface. The exceptions are wells MW-01 and MW-04A which are perforated in the intervals from 42 to 62 feet and 87 to 107 feet, respectively. During the January 1989 round of sampling, the ground water elevation at well MW-04 (shallow) was a minimal 0.09 feet higher than the ground water elevation at well MW-04A (deep). In April 1989, ground water elevation at the shallow well was 0.91 feet higher than the deep well. During the July and October rounds of sampling, the ground water elevation of the deep well was 0.11 and 0.16 feet higher than the shallow well, respectively. In January 1990, the ground water elevation of the deep well was 0.20 feet higher than the shallow well. In April 1990, the ground water elevation of the deep well was 0.37 feet higher than the shallow well. Seasonal fluctuation does not appear to be the controlling factor since the previous four rounds have noted higher elevations at the deeper well site. Subsequent measurements at the location will allow for a determination of whether the observed difference is reflective of actual conditions or other factors.

SCC11:8

6.0 GROUND WATER QUALITY

Based upon the results of laboratory testing performed on the ground water samples collected January 1989 from the on-site monitor wells, the presence of two contaminant plumes in the Hollydale Aquifer was reaffirmed. Historically, these plumes have been present at varying concentrations and lateral extent. In January 1989, one plume consisting primarily of site-specific indicator parameters (metals), was aligned in a northeasterly direction in the vicinity of wells MW-04 and MW-09. The other, consisting of organic compounds, was similarly aligned along the northern boundary of the site property with the highest concentrations found in wells MW-03, MW-04, and MW-11.

Analytical results from the 12 wells sampled during the April 1990 quarterly monitoring have been compiled in Tables 6-1 through 6-3. As can be seen from an examination of the analytical data, significant amounts of total and hexavalent chromium and trichloroethene (80.70 and 81.70 mg/l, and 280 μ g/l, respectively) were detected at well MW-04 (shallow). This finding is consistent with previous rounds of sampling. In addition, significant concentrations of ethylbenzene and total xylenes (2100 and 720 μ g/l, respectively) were detected at well MW-3. The following sections will describe both metals and purgeable halocarbon/aromatics analytical results in detail.

6.1 Site-Specific Indicator Parameters

Hexavalent Chromium (Cr[VI])

Elevated levels of Cr(VI) were found to be present in MW-04 and MW-09 during the January 1989 sampling. Cr(VI) was originally detected in MW-04 at a concentration of 500 mg/l in June, 1985, and has fluctuated between 33 (January 1989 data) and 500 mg/l since. In order to compare the analytical data from the most recent sampling events (January, April, July and October 1989, January 1990) with the April 1990 data, Table 6-4 was compiled. The table compares parameters of interest (hexavalent and total chromium, cadmium, zinc, purgeable aromatics and trichloroethene) at selected well

TABLE 6-1 SOUTHERN CALIFORNIA CHEMICAL **APRIL 1990 QUARTERLY SAMPLING** PURGEABLE HALOCARBONS ANALYTICAL RESULTS MONITOR WELL SAMPLES

Promodichloromethane								,	,				
Stromport Stro	COMPOUND	MW01	MW02	MW03	MW04	MW04A	MW05	MW06B	MW07	MW08	MW09	MW10	MW11
Carbon Tetrachloride	Bromodichloromethane									< 0.40	< 1.00		
Carbon Tetrachloride	Bromoform	<5.00	<1.00	<100.00	<20.00	<1.00	<1.00	< 1.00	< 5.00	< 0.40	< 1.00	< 5.00	< 5.00
Chlorobenzene	Bromomethane	<1.00	<0.20	<20.00	<4.00	<0.20			<1.00	< 0.40	< 1.00	<1.00	<1.00
Chloroethane	Carbon Tetrachloride	<1.00	<0.20	87.00	<4.00	<0.20	120.00	< 1.00	<1.00	< 0.40	< 1.00	<1.00	<1.00
Chloroform	Chlorobenzene	<2.50	<0.50	<50.00	<10.00	< 0.50	<2.50	< 2.50	< 2.50	<1.00	< 2.50	<2.50	<2.50
Chloromethane	Chloroethane	<1.00	<0.20	<20.00	<4.00	<0.20	<1.00	< 1.00	<1.00	< 0.40	< 1.00	<1.00	<1.00
Color Colo	Chloroform	<1.00	<0.20	<20.00	6.00	<0.20	76.00	< 1.00	<1.00	< 0.40	13.00	<1.00	<1.00
	Chloromethane	<1.00	<0.20	<20.00	<4.00	<0.20	<1.00	< 1.00	<1.00	< 0.40	< 1.00	<1.00	<1.00
3-Dichlorobenzene <2.50 <0.50 <50.00 <10.00 <0.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50	Dibromochloromethane	<1.00	<0.20	<20.00	<4.00	<0.20	<1.00	< 1.00	<1.00	< 0.40	< 1.00	<1.00	
(4-Dichlorobenzene <2.50 <0.50 <50.00 <10.00 <0.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50 <2.50	1,2-Dichlorobenzene	<2.50	< 0.50	<50.00	<10.00	< 0.50	<2.50	< 2.50	<2.50	<1.00	< 2.50	< 2.50	<2.50
Company	1,3-Dichlorobenzene					< 0.50				<1.00		<2:50	<2.50
	1,4-Dichlorobenzene	<2.50		<50.00	<10.00	<0.50	<2.50	< 2.50	< 2.50	<1.00	< 2.50	<2.50	<2.50
1.2-Dichloroethene	Dichlorodifluoromethane				<4.00	<0.20		<1.00		< 0.40	< 1.00	<1.00	<1.00
1-Dichloroethene 1.00 2.20 22.00 35.00 2.20 21.00 21.00 2.70 48.00 5.60 21.00 2.2	1,1-Dichloroethane	<1.00	<0.20	<20.00	67.00	<0.20	<1.00	< 1.00	3.70	28.00	89.00	4.90	<1.00
1,2 Dichloroethene (Total) 1.00 20.20 20.00 24.00 20.20 21.00									<1.00		15.00	90.00	23.00
1.00 1.00	1,1-Dichloroethene					<0.20	<1.00	< 1.00	< 1.00	2.70	48.00	5.60	<1.00
cis-1,3-Dichloropropene <1.00		<1.00		<20.00	<4.00	<0.20	<1.00	< 1.00	1.20	5.30	< 1.00	<1.00	<1.00
Trans-1,3-Dichloropropene		<1.00	<0.20	<20.00	<4.00	<0.20	<1.00	< 1.00	< 1.00	< 0.40	< 1.00	<1.00	<1.00
	cis-1,3-Dichloropropene			<20.00	<4.00	<0.20	<1.00	< 1.00	<1.00	< 0.40	< 1.00	<1.00	<1.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	trans-1,3-Dichloropropene	<1.00	<0.20	<20.00	<4.00	<0.20	<1.00	< 1.00	< 1.00	< 0.40	< 1.00	<1.00	<1.00
Tetrachloroethene 3.80 <0.20	Methylene Chloride		<2.00	<200.00	54.00	<2.00	<10.00	< 10.00	<10.00	<4.00	< 10.00	<10.00	<10.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1,2,2-Tetrachloroethane	<1.00	<0.20	<20.00	<4.00	<0.20	<1.00	< 1.00	< 1.00	< 0.40	< 1.00	<1.00	<1.00
1,1,2-Trichloroethane	Tetrachloroethene	3.80	<0.20	<20.00	<4.00	<0.20	<1.00	5.00	<1.00	1.00	2.00	<1.00	<1.00
Trichloroethene 20.00 36.00 74.00 280.00 2.70 24.00 61.00 46.00 17.00 150.00 93.00 33.00	1,1,1-Trichloroethane	<1.00	<0.20	<20.00	<4.00	<0.20	<1.00	< 1.00	< 1.00	< 0.40	4.00	<1.00	<1.00
	1,1,2-Trichloroethane							< 1.00	<1.00	< 0.40	< 1.00	<1.00	
	Trichloroethene	20.00	36.00	74.00	280.00	2.70	24.00	61.00	46.00	17.00	150.00	93.00	33.00
Trichlorofluoromethane <10.00 <2.00 <200.00 <40.00 <2.00 <10.00 <2.50 <10.00 <4.00 <2.50 <10.00 <10.00	Trichlorofluoromethane	<10.00	<2.00	<200.00	<40.00	<2.00	<10.00	< 2.50	<10.00	<4.00	< 2.50	<10.00	<10.00
/inyl Chloride <1.00 <0.20 <20.00 <4.00 <0.20 <1.00 <1.00 <1.00 <0.40 <1.00 <1.00 <1.00 <1.00	Vinyl Chloride	<1.00	<0.20	<20.00	<4.00	<0.20	<1.00	< 1.00	<1.00	< 0.40	< 1.00	<1.00	<1.00

Note: All results in micrograms per liter (ug/l)
Laboratory analysis performed by ATI.
< Denotes non-detection at indicated detection limit

TABLE 6-2 SOUTHERN CALIFORNIA CHEMICAL APRIL 1990 QUARTERLY SAMPLING PURGEABLE AROMATICS ANALYTICAL RESULTS MONITOR WELL SAMPLES

COMPOUND	MW01	MW02	MW03	MW04	MW04A	MW05	MW06B	MW07	MW08	MW09	MW10	MW11
Benzene	< 2.50	< 0.50	<50.00	<10.00	< 0.50	<2.50	<2.50	< 2.50	< 1.00	<2.50	<2.50	<2.50
Ethylbenzene	< 2.50	<0.50	2100.00	<10.00	< 0.50	<2.50	<2.50	< 2.50	< 1.00	<2.50	200.00	370.00
Tolulene	< 2.50	<0.50	<50.00	<10.00	< 0.50	<2.50	<2.50	< 2.50	< 1.00	<2.50	<2.50	2.60
Xylenes, Total	< 5.00	<1.00	720.00	<20.00	<1.00	<5.00	<2.50	< 5.00	< 4.00	<5.00	<5.00	150.00

Note: All results in micrograms per liter (ug/l) < Denotes non-detection at indicated detection limit Laboratory analysis performed by ATI.

TABLE 6-3 SOUTHERN CALIFORNIA CHEMICAL APRIL 1990 QUARTERLY SAMPLING METALS, CHLORIDE, NITRATE, EC AND PH ANALYTICAL RESULTS MONITOR WELL SAMPLES

COMPOUND	MW01	MW02	MW03	MW04	MW04A	MW05	MW06B	MW07	MW08	MW09	MW10	MW11
Cadmlum	< 0.005	< 0.005	< 0.005	0.13	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005
Chromium, Hexavalent	< 0.02	< 0.02	< 0.02	81.70	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.80	< 0.02	< 0.02
Chromium, Total	0.02	0.02	< 0.01	80.70	< 0.01	< 0.01	0.02	< 0.01	< 0.01	0.81	< 0.01	< 0.01
Copper	-0.02	< 0.02	< 0.02	= 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02
Zinc	0.02	= 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	0.02	0.03	< 0.01	< 0.01
Chioride	475.00	140.00	360.00	1000.00	130.00	85.00	90.00	450.00	160.00	250.00	195.00	115.00
Nitrate (Nitrogen)	1.20	1.50	2.60	< 0.20	5.70	6.60	9.40	5.00	4.70	3.50	< 0.05	2.10
EC (umhos/cm)*	2000.00	1400.00	1800.00	5000.00	1250.00	1150.00	1250.00	2370.00	1360.00	1520.00	1590.00	1320.00
pH*	6.96	7.33	6.70	6.59	7.38	7.12	7.65	7.91	7.24	7.15	7.48	7.56

Note: All metal, chloride and nitrate results in milligrams per liter (mg/l)

< Denotes non-detection at indicated detection limit

= Denotes compound concentration is equal to the detection limits

Laboratory analysis performed by ATI, except for * which were field analyzed.

TABLE 6-4 SELECTED WELLS/PARAMETERS COMPARISON FROM JANUARY 1989 TO APRIL 1990

		MET	ALS		PUR		ROMATICS		PURG. HALOCARBONS
MONITOR WELL	Hexavalent	Total	Cadmium	Zinc	Benzene	Toluene	Ethyl-	Total	Trichloro-
No. / Date	Chromium	Chromium	1				benzene	Xylenes	ethene
AW - 1									
Jan-89	ND	0.014	ND	0.015	. ND	ND	ND	ND	19
Apr-89	ND	0.1	ND	ND	ND	ND	ND	3	23
Jul-89	ND	0.06	0.01	0.06	ND	ND	ND	ND	13
Oct-89	ND	ND	ND	0.11	ND	ND	ND	ND	12
Jan-90	ND	ND	ND	0.02	ND	ND	ND	ND	16
Apr-90	ND	0.02	ND	0.02	ND ND	ND	ND	ND	20
/W - 2	1 10	0.02	110	0.02	110	110	IVD	 	
Jan-89	0.017	0.022	ND	ND	ND	ND	ND	ND	60
Apr-89	ND	0.05	ND	ND	ND	ND	ND	ND	45
Jul-89	ND	0.06	ND	0.04	ND	ND	ND	ND	67
Oct-89	ND	ND	ND	ND	ND ND	ND	ND	ND	35
Jan-90	ND	ND	ND	0.01	ND	ND	ND	ND	27
Apr-90	ND	0.02	ND	0.01	ND	ND	ND	ND	36
MW - 3	H ND	0.02	110	0.01	110	HD.	110	110	- 30
	ND	ND	ND	ND	7.4	17	4900	1500	74
Jan-89 Apr-89	ND ND	0.07	ND	ND	ND	ND	1200	60	110
Jul-89	ND ND	0.07	ND	0.2	ND	ND ND	ND	ND	120
Oct-89	ND	ND	ND	ND	<50	<100	1600	150	<100
Jan-90	ND	ND	ND	0.01	ND	ND	110	ND ND	65
Apr-90	ND	ND	ND	ND	ND	ND	2100	720	74
	ND	ND	ND	עא	- ND	NU	2100	720	/4
AW - 4	33	400	0.028	0.007	ND	10	15	29	120
Jan-89				ND		23	15	50	280
Apr-89	43	100	0.05		ND ND	ND	140		290
Jul-89	120	98 120	0.08	0.09	ND ND	ND	ND	ND	250
Oct-89	110					ND	ND	ND	220
Jan-90	109	95.1	0.12	0.01	ND ND	ND	ND	ND	280
Apr-90	82	80.7	0.13	0.01	ND	ND	אט	ND	280
MW - 7	100	- 115	l NB			1 1	10	 	
Jan-89	ND	ND	ND	ND	ND ND	1.4	1.2	3.6	35
Apr-89	ND	0.02	ND	ND ND	ND ND	ND	ND	1	47
Jul-89	ND	0.03	ND	ND	ND ND	ND	ND.	ND	25
Oct-89	ND	ND	ND	ND I	ND	ND	ND	ND	44
Jan-90	ND	ND	ND	ND	ND	ND	ND	ND	39
Apr-90	ND	ND	ND	ND	ND	ND	ND	ND	46
MW - 9			112					 ,,_	
Jan-89	0.45	0.33	ND	0.008	ND	ND	ND	ND ND	55
Apr-89	ND	0.06	ND	ND	ND	ND	ND	ND	24
Jul-89	ND	0.17	ND	0.08	ND	ND	ND	ND	57
Oct-89	2.5	1.8	ND	ND	ND ND	ND	ND	ND	110
Jan-90	2.28	2.2	ND	0.02	ND ND	ND	ND	ND	100
Apr-90	0.8	0.81	ND	0.03	· ND	ND	ND	ND	150
MW - 11								_	
Jan-89	ND	ND	ND	ND	ND	ND .	43	1.5	34
Apr-89	ND	0.04	ND	ND	ND	7500	2600	11000	39
Jul-89	ND	ND	ND	0.05	ND	ND	ND	90	29
Oct-89	ND	ND	ND	ND	ND	ND	200	ND	35
Jan-90	ND	ND	ND	0.01	ND	ND	83	ND	46
Apr-90	ND	ND	ND	ND	ND	2.6	370	150	33

locations. Wells were selected based on an evaluation of their relative position and past indications of contamination. Well MW-1 was selected because of its upgradient location. Wells MW-2, MW-3 and MW-11 were selected because of their position along the northern border of the site and significant past detections of purgeable aromatic compounds. Well MW-4 was included in the comparison because it historically yields the highest chromium concentrations. Well MW-9 was selected because of its location downgradient from the former chromic acid underground storage tank. Well MW-7 was chosen because of its position adjacent to the ferric chloride area.

During the January and April 1989 sampling events, the concentration of Cr(VI) in MW-04 had significantly decreased since the September 1988 sampling when it was detected at 170 mg/l. During the July 1989 sampling, the concentration increased significantly to 120 mg/l. At the present time, its concentration remained fairly stable at 110 mg/l in October 1989 and at 109 mg/l in January 1990. The concentration decreased significantly to 82 mg/l in the April 1990 sampling event. In September 1986, Cr(VI) in MW-09 was detected at a concentration of 0.05 mg/1, with fluctuations between non-detected and 2.50 mg/l since. During the April and July 1989 sampling, it was not detected at a method detection limit of 0.05 mg/l. Cr(VI) was detected, however, during the October 1989 sampling at a concentration of 2.5 mg/l, in January 1990 at 2.28 mg/l, and in April 1990 at 0.80 mg/l. It should be noted that the water discharged from well MW-09 in October 1989, January 1990, and in April 1990, was slightly greenish yellow in color. The discoloration did not change significantly during the evacuation of three saturated casing volumes of water from the well during October 1989, January 1990, or April 1990 (40, 36, and 40 gallons, respectively). The October 1989 sampling event was the first time discoloration typical of chromium contamination was observed by CDM sampling team members in an on-site well other than well MW-04. It was not detected in any of the remaining monitoring wells above the method detection limit of 0.05 mg/l in April, July or October 1989, or in January or April 1990. Figure A-3 in Appendix A shows the concentration of Cr(VI) detected at wells MW-4 and MW-9 during the April 1990 sampling.

Total Chromium (Cr[T])

Historically, Cr(T) has been present at elevated concentrations in ground water samples collected from monitoring wells MW-04 and MW-09. Cr(T) was initially detected in MW-04 at a concentration of 500 mg/l in June 1985, with fluctuations between 61 and 550 mg/l since. Cr(T) was initially detected in MW-09 at a concentration of 0.12 mg/l in June 1987, with fluctuations between 0.06 and 2.75 mg/l (September 1988) since. The most recent analytical results from the April 1990 sampling event show that the concentration of Cr(T) has decreased slightly at MW-4 and MW-9.

The July 1989 analytical data showed that, with the exception of well MW-11, Cr(T) was detected in all on-site wells. During the October 1989 and January 1990 sampling events, Cr(T) was detected only in wells MW-4 and MW-9. During April 1990 sampling, Cr(T) was also detected in Wells MW-1, MW-2, and MW-6B at concentrations slightly above the detection limit. Figure A-4 shows the concentrations of Cr(T) detected during the April 1990 sampling.

In previous reports (February 1988, June 1988) Kleinfelder attributed the apparent rise in Cr(T) concentration after February 1988 to a change in sample preparation, and not a change in ground water quality. Brown & Caldwell, the laboratory that Kleinfelder selected as their analytical laboratory prior to February 1988, used a modification of EPA Method 3010 sample preparation in which the sample was not mixed prior to analysis. CRL, the laboratory that Kleinfelder selected as their analytical laboratory beginning in February 1988, prepared samples in strict accordance with EPA Method 3010. This method requires that samples are well-mixed, keeping all solids in suspension prior to removal of the sample from the sample container. It was believed that this mixing of the sample yielded Cr(T) concentrations that included suspended sediments. Hence, Kleinfelder began in May 1988, the practice of field filtering the ground water samples to be analyzed for metals through a 0.45-micron screen. All samples collected for metals analyses during the April 1990 sampling were filtered in the field using a sterile 0.45-micron filter, except for MW-1, MW-2, MW-3, MW-4 and MW-11, which were filtered in the lab by ATI.

It is interesting to note that during the April 1989 sampling, total chromium was detected in all 12 monitor well samples. During the July 1989 sampling, it was detected in 11 of the 12 on-site wells. During the October 1989 and January 1990 sampling, it was detected only in wells MW-4 and MW-9. During April 1990 sampling, Cr(T) was detected in Wells MW-1, MW-2, M-4, MW-6B and MW-9. A federal MCL (maximum contamination limit) for chromium has been established at 0.05 mg/l. The fact that total chromium has historically been detected in the upgradient wells MW-01 and MW-02 and in the other ten on-site wells, could be indicative of a regional ground water contamination problem.

Total chromium has consistently been detected in well MW-4 since the inception of ground water monitoring in 1985, and first appeared in 1987 and 1988 at other well locations. Based on a review of the available data, it cannot be established at the present time whether a regional problem does exist. This issue should be resolved during subsequent ground water sampling at the site.

It should be noted that the reported total chromium concentration for well MW-04 (monitor well and duplicate samples) was slightly less than the concentrations of hexavalent chromium reported for those samples. The detection of less total chromium than hexavalent chromium has been a recurring analytical problem with previous laboratories, and has been considered a minor analytical quality assurance problem. The laboratory was informed of this potential problem during the April Sampling and Analysis. According to ATI, hexavalent chromium is sometimes slightly higher than the total chromium due to the fact that different methods are used to determine total and hexavalent chromium concentrations. Because the difference between total and hexavalent chromium is within the lab's allowable analytical error, the lab does not consider these differences problematic.

Cadmium (Cd)

Prior to the July 1989 sampling, cadmium had only been detected in ground water samples collected from monitoring well MW-04. Cadmium was initially

detected in MW-04 at a concentration 0.78 mg/l in June 1985 with fluctuations between non-detection and 0.92 mg/l (July 1985) since. The concentration of cadmium had increased slightly at well MW-04 during the first three quarters of 1989. The concentration of cadmium at MW-04 rose from 0.07 mg/l in October 1989 to 0.12 mg/l in January 1990. During the April 1990 sampling, cadmium was detected at 0.13 mg/l in MW-04. During the July 1989 sampling cadmium was also detected for the first time, (0.01 mg/l) in well MW-01 at the method detection limit, but it has not been detected since. A federal MCL of 0.010 mg/l has been established for cadmium. Figure A-5 shows the concentration of cadmium which was detected at well MW-04 during the April 1990 sampling.

Zinc (Zn)

Isolated detections of zinc in ground water have occurred in samples from each well since the inception of the quarterly ground water monitoring program. Concentrations have ranged from non-detections at less than 0.001 mg/l to 0.35 mg/l. The most consistent detections have occurred in ground water samples collected from monitoring well MW-01. The concentration of zinc in MW-01 decreased from 0.08 mg/l in September 1988 to 0.015 mg/l in January 1989. During the October 1989 sampling, zinc was detected in the well at a concentration of 0.11 mg/l. Zinc was detected at MW-01 at a concentration of 0.02 mg/l during the January and April 1990 samplings. At these low levels, the occurrence of zinc does not appear to be of significant concern. A federal MCL of 5.0 mg/l has been established for zinc. Figure A-6 shows that zinc was detected at or slightly above the detection limit of 0.01 in wells MW-1,MW-2, MW-5, MW-8 and MW-9 during the April 1990 sampling.

6.2 Organic Compounds

Reportedly, organic chemicals have not historically been used on-site in any of the production processes by SCC. Two 10,000 gallon underground storage tanks (diesel and gasoline), however, were located in the approximate center of the facility, due east of the drum wash area. During tank removal operations in July 1989, petroleum hydrocarbon contamination was

discovered in the tank excavation. SCC is in the process of investigating the extent of contamination. Historically, organic compounds have been detected in ground water underlying the facility in the Hollydale aquifer, varying in both concentration and lateral extent. The primary organic compounds of concern are the purgeable aromatic compounds and the chlorinated solvent trichloroethylene (TCE), and various forms of dichloroethane and dichloroethene. The individual compounds and the concentrations they have been detected at will be discussed in the following paragraphs.

Ethylbenzene

During the January 1989 sampling, ethylbenzene was detected in wells MW-03, -4, -7, -10 and -11 at concentrations of 4,900, 15, 1.2, 0.54 and 43 μ g/1, respectively. The April 1989 analytical results revealed that the concentration at MW-04 remained the same, while concentrations decreased at MW-03 and increased significantly at MW-11. Ethylbenzene was not detected in the remaining nine wells. During the July 1989 sampling event, ethylbenzene was detected in well MW-4 at a concentration of 140 μ g/l, a significant increase from the previous two rounds. Ethylbenzene was not detected in the remaining 11 wells. During the October 1989 sampling, it was detected in wells MW-3, MW-10 and MW-11 at concentrations of 1600, 190 and 200 μ g/1, respectively. During the January 1990 sampling, ethylbenzene was again detected in wells MW-3, MW-10 and MW-11 at concentrations of 110, 210, and 83 µq/l, respectively. Ethylbenzene was detected in MW-3, MW-10 and MW-11 at 2,100, 200 and 370 $\mu q/l$, respectively, during the April 1990 sampling event. These data clearly indicate the presence of an ethylbenzene plume in the northwest corner of the facility. As can be seen by an examination of Table 6-4, significant concentrations of ethylbenzene have been detected at well MW-3 during four of the last five sampling events. Concentrations from the January 1990 sampling are illustrated in Figure A-7 of Appendix A.

Total Xylenes

During the January 1989 sampling, total xylenes were detected in wells MW-03, -4, -4A, -7, -8, and -11, at concentrations of 1,500, 29, 1.3, 3.6,

1.6 and 1.5 μ g/l, respectively. The April 1989 analytical results revealed that xylene concentrations decreased in wells MW-03 and -7 to 60 and 1.0 μ g/l, respectively, and were not detected at all in wells MW-4A and -8. Concentrations increased significantly at well MW-11 and increased slightly to 50 μ g/l at well MW-4. Total xylenes were not detected in the remaining six wells. During the July 1989 sampling, total xylenes were detected only in wells MW-4, -10 and -11 at concentrations of 40, 30 and 90 μ g/l, respectively. During the October 1989 sampling, xylenes were detected at a concentration of 150 μ g/l only in well MW-3. Xylenes were not detected in any of the wells during the January 1990 sampling. Xylenes were detected in MW-3 and MW-11 at concentrations of 720 and 150 μ g/l, respectively during April 1990 sampling. Concentrations from the April 1990 sampling are illustrated in Figure A-8 of Appendix A.

Toluene

Toluene was detected during the January 1989 sampling at wells MW-03, -4, and -7, at concentrations of 17, 10 and 1.4 μ g/l, respectively. The April 1989 analytical results revealed that the concentrations at wells MW-03 and -7 declined to nondetectable levels, while the concentration at MW-4 increased slightly to 23 μ g/l. Toluene was not detected at well MW-11 in January 1989, however, during the April 1989 sampling a significant concentration was found. During the July and October 1989, and the January 1990 sampling events, toluene was not detected in any of the 12 on-site wells. Toluene was detected in MW-11 at a concentration of 2.60 μ g/l during the April 1990 sampling. Concentrations from the April 1990 sampling are illustrated in Figure A-9 of Appendix A.

Benzene

The appearance of benzene, a known carcinogen, has been very erratic throughout the course of the ground water monitoring program. Benzene has never been detected in wells MW-01, -2, -6B, -8, -9 and -10. In most cases where benzene has historically been detected, reported values have ranged from not detected to a maximum of 20 μ g/1. During the January 1989

sampling event, benzene was detected in wells MW-03 and -5 at concentrations of 7.4 and 0.9 $\mu g/1$, respectively. Benzene was not detected in any of the 12 wells during the April or July 1989 sampling events. During the October 1989 sampling, it was detected at a concentration of 0.06 $\mu g/1$ (slightly above the 0.05 $\mu g/1$ detection limit) in well MW-5. Benzene was not detected in any of the wells during the January 1990 sampling event. Non-detections from the April 1990 sampling are illustrated in Figure A-10 of Appendix A. It should be noted that because of the presence of significant concentrations of ethylbenzene and total xylenes at Well MW-3, the detection limits for benzene and toluene were increased to 50 $\mu g/1$ for that sample.

Trichloroethylene

As illustrated in Figure A-11 of Appendix A, trichloroethylene (TCE) was detected in all 12 of the ground water monitoring wells in April 1990. During the October 1989 sampling event, TCE was detected in 11 of the 12 ground water monitoring wells. Because of the increased detection limit (100 μ g/1) was not detected in well MW-03 at that time. During the January, April and July 1989 quarterly sampling events, TCE was also found in all 12 on-site ground water monitoring wells. TCE concentrations in January 1989 ranged from a high of 120 μ g/1 in the shallow well at MW-04 to a low of 6.7 μ g/1 in the deep well at that location. In April 1989, the concentrations at those locations ranged from a high of 280 to a low of 7 μ g/1, respectively. In July and October 1989, and January 1990, the concentrations were comparable, with highs of 290, 250, and 220 μ g/1 to lows of 5, 3, and 8 μ g/1, respectively, at those locations. In April 1990 the concentrations of the shallow and deep wells at MW-04 were 280 and 2.70 μ g/1, respectively.

Numerous other purgeable halocarbon compounds were also detected in several of the on-site wells at concentrations ranging from 0.80 to 140 μ g/l during the April 1990 sampling. Various forms of dichloroethane and dichloroethene, degradation products of trichloroethane and trichloroethene, were the more common of the other constituents detected.

A review of the analytical results contained in Appendix B reveals that, with minor exceptions, TCE has historically been detected in all on—site monitor wells, including upgradient wells. It would seem that the problem exists well beyond the boundaries of the subject facility. Recent discussions with the Department of Health Services and the Regional Water Quality Control Board indicate that TCE is generally recognized as a regional ground water contaminant.

7.0 ASSESSMENT QUARTERLY GROUND WATER MONITORING PROGRAM STATUS

To date, CDM has implemented the field sampling protocols outlined in the unapproved Kleinfelder QAPP with minor modification. CDM has also submitted for regulatory approval a Sampling and Analysis Plan, a Quality Assurance/ Quality Control Plan, a Health and Safety Plan, and a Data Management Plan as components of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Workplan promulgated by an Administrative Order on Consent, dated December 8, 1988 by EPA. When the RFI Workplan is granted final approval, subsequent quarterly ground water sampling programs will follow the specifications and procedures which are contained therein. CDM offers no warranty, expressed or implied, as to the adequacy, accurateness, or appropriateness of the unapproved Kleinfelder QAPP. This document was used as guidance simply on the basis of it being the status quo guidance document for quarterly sampling procedures at SCC in lieu of following procedures outlined in a document approved for the purposes of conducting the pending RCRA Facility Investigation.

8.0 REFERENCES

- Camp Dresser & McKee Inc., RCRA Facility Investigation Work Plan, Southern California Chemical, November 28, 1989.
- Camp Dresser & McKee Inc., Current Conditions Report, Southern California Chemical, November 1989.
- J.H. Kleinfelder & Associates, Quality Assurance Project Plan, Southern California Chemical, May 1988.

APPENDIX A

FIGURES

APPENDIX B

HISTORIC GROUND WATER ANALYSES DATA

JANUARY 1990 MONITOR WELL RESULTS

TABLE 6-1 SOUTHERN CALIFORNIA CHEMICAL JANUARY 1990 QUARTERLY SAMPLING PURGEABLE HALOCARBONS ANALYTICAL RESULTS MONITOR WELL SAMPLES

COMPOUND	M W 0 1	M W 0 2	MW03	MW04	MW4A	MW05	MW06B	M W 07	M W 08	M W 09	M W 1 0	MW11
Bromodichioromethane	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
Bromoform	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
Bromomethane	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
Carbon Tetrachloride	< 0.20	< 0.40	28.00	< 5.00	< 0.20	52.00	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00 .	< 2.00
Chlorobenzene	< 0.50	< 1.00	< 5.00	< 12.00	< 0.20	< 1.00	< 2.50	< 2.50	< 0.50	< 2.50	< 5.00	< 5.00
Chloroethane	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
Chloroform	< 0.20	< 0.40	23.00	5.10	< 0.20	42.00	< 1.00	< 1.00	0.49	8.10	< 2.00	< 2.00
Chloromethane	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
Dibromochioromethane	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
1,2-Dichlorobenzene	< 0.50	< 1.00	< 5.00	< 12.00	< 0.50 .	< 1.00	< 2.50	< 2.50	< 0.50	< 2.50	< 5.00	< 5.00
1,3-Dichlorobenzene	< 0.50	< 1.00	< 5.00	< 12.00	< 0.50	< 1.00	< 2.50	< 2.50	< 0.50	< 2.50	< 5.00	< 5.00
1,4-Dichlorobenzene	< 0.50	< 1.00	< 5.00	< 12.00	< 0.50	< 1.00	< 2.50	< 2.50	< 0.50	< 2.50	< 5.00	< 5.00
1,1-Dichloroethane	< 0.20	< 0.40	< 2.00	72.00	< 0.20	0.42	< 1.00	2.40	29.00	60.00	9.80	5.50
1,1-Dichloroethene	0.73	< 0.40	4.00	33.00	< 0.20	< 0.40	< 1.00	< 1.00	6.60	36.00	8.40	< 2.00
1,2-Dichloroethane	0.89	< 0.40	20.00	100.00	< 0.20	2.20	< 1.00	< 1.00	0.83	3.90	80.00	28.00
1,2-Dichioropropane	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
cis-1,3-Dichloropropene	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
trans-1,3-Dichioropropene	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
Methylene Chloride	< 2.00	< 4.00	< 20.00	74.00	< 2.00	< 4.00	< 10.00	< 10.00	< 2.00	< 10.00	< 20.00	< 20.00
1,1,2,2-Tetrachioroethane	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
Tetrachloroethene	3.10	0.54	< 5.00	< 5.00	< 0.20	< 0.40	6.40	< 1.00	1.40	2.20	< 2.00	< 2.00
1,1,1-Trichioroethane	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	0.41	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
1,1,2-Trichloroethane	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
Trichloroethene	16.00	27.00	65.00	220.00	8.00	16.00	46.00	39.00	28.00	100.00	84.00	46.00
Trichlorofluoromethane	< 2.00	< 4.00	< 20.00	< 50.00	< 0.20	< 0.40	< 10.00	< 10.00	< 2.00	< 10.00	< 20.00	< 20.00
Vinyl Chloride	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
Dichlorodifluoromethane	< 0.20	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	< 0.20	< 1.00	< 2.00	< 2.00
1,2 Dichloroethane (Total)	0.35	< 0.40	< 2.00	< 5.00	< 0.20	< 0.40	< 1.00	< 1.00	4.70	1.30	< 2.00	< 2.00

Note: All results in micrograms per liter (ug/l) Laboratory analysis performed by ATI.

< Denotes non-detection at indicated detection limit

TABLE 6-2 SOUTHERN CALIFORNIA CHEMICAL JANUARY 1990 QUARTERLY SAMPLING PURGEABLE AROMATICS ANALYTICAL RESULTS MONITOR WELL SAMPLES

COMPOUND	M W 0 1	MW02	MW03	MW04	MW4A	M W 0 5	MW06B	MW07	MW08	MW09	MW10	M W 1 1
Benzene	< 0.50	< 1.00	< 5.00	< 12.00	< 0.50	< 1.00	< 2.50	< 2.50	< 0.50	< 2.50	< 5.00	< 5.00
Ethylbenzene	< 0.50	< 1.00	110.00	< 12.00	< 0.50	< 1.00	< 2.50	< 2.50	< 0.50	< 2.50	210.00	83.00
Tolulene	< 0.50	< 1.00	< 5.00	< 12.00	< 0.50	< 1.00	< 2.50	< 2.50	< 0.50	< 2.50	< 5.00	< 5.00
Xylenes, Total	< 1.00	< 2.00	< 10.00	< 25.00	< 1.00	< 2.00	< 5.00	< 5.00	< 1.00	< 5.00	< 10.00	< 10.00

Note: All results in micrograms per liter (ug/l) < Denotes non-detection at indicated detection limit Laboratory analysis performed by ATI.

TABLE 6-3 SOUTHERN CALIFORNIA CHEMICAL JANUARY1990 QUARTERLY SAMPLING METALS, CHLORIDE AND NITRATE ANALYTICAL RESULTS MONITOR WELL SAMPLES

COMPOUND	MW01	MW02	MW03	MW04	MW04A	M W 0 5	MW06B	MW07	MW08	M W 0 9	MW10	MW11
Cadmium	< 0.01	< 0.01	< 0.01	0.12	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chromium, Hexavalent	< 0.02	< 0.02	< 0.02	109.00	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	2.28	< 0.02	< 0.02
Chromium, Total	< 0.01	< 0.01	< 0.01	95.10	< 0.01	= 0.01	< 0.01	< 0.01	< 0.01	2.20	< 0.01	< 0.01
Copper	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Zinc	0.02	= 0.01	= 0.01	= 0.01	< 0.01	= 0.01	0.02	< 0.01	= 0.01	0.02	0.02	= 0.01
Chloride	513.00	101.00	309.00	2200.00	121.00	114.00	77.10	300.00	222.00	329.00	208.00	103.00
Nitrate (Nitrogen)	4.90	6.40	1.30	0.68	6.00	6.60	9.70	6.10	4.20	5.90	0.20	0.20

Note: All results in milligrams per liter (mg/l) < Denotes non-detection at indicated detection limit

= Denotes compound concentration is equal to the detection limits Laboratory analysis performed by ATI.

TABLE 6-4 SOUTHERN CALIFORNIA CHEMICAL JANUARY 1990 QUARTERLY SAMPLING RCRA INDICATOR PARAMETERS (QUADRUPLICATE ANALYSES) MONITOR WELL SAMPLES

COMPOUND (units)	MW01	MW02	MW03	MW04	MW04A	MW05	MW06B	MW07	MW08	MW09	MW10	MW11
EC 1 (umhos/cm)	2640.00	1460.00	1970.00	4340.00	1510.00	1380.00	1250.00	2150.00	1720.00	2070.00	1790.00	1530.00
EC 2 (umhos/cm)	2640.00	1470.00	1990.00	4380.00	1510.00	1380.00	1270.00	2160.00	1720.00	2080.00	1810.00	1550.00
EC 3 (umhos/cm)	2550.00	1460.00	2000.00	4360.00	1530.00	1380.00	1260.00	2170.00	1750.00	2080.00	1810.00	1560.00
EC 4 (umhos/cm)	2650.00	1470.00	2010.00	4440.00	1530.00	1370.00	1280.00	2200.00	1740.00	2090.00	1810.00	1550.00
pH 1 (lab units)	7.03	7.70	7.41	6.70	7.41	7.03	7.36	7.69	7.63	7.41	7.70	7.77
pH 2 (lab units)	6.98	7.72	7.44	6.67	7.42	7.11	7.34	7.74	7.61	7.45	7.80	7.81
pH 3 (lab units)	7.16	7.72	7.49	6.72	7.43	7.23	7.35	7.72	7.61	7.48	7.71	7.86
pH 4 (lab units)	7.27	7.78	7.46	6.67	7.47	7.16	7.39	7.74	7.68	7.47	7,81	7.78
TOC 1 (mg/l)	9.20	1.00	38.20	59.00	8.30	, 6.90	1.20	1.90	2.20	3.70	35.50	18.90
TOC 2 (mg/l)	8.80	1.30	38.60	59.30	4.40	6.30	1.30	1.30	2.30	4.00	36.30	20.20
TOC 3 (mg/l)	8.40	0.80	37.90	57.00	2.50	6.40	1.30	1.10	1.60	3.50	36.60	20.10
TOC 4 (mg/l)	8.40	= 0.50	37.30	59.10	1.50	6.20	0.90	1.60	2.00	3.60	35.80	20.40
TOX 1 (ug/l)	48.00	35.00	190.00	1700.00	= 8.00	160.00	57.00	37.00	69.00	220.00	190.00	83.00
TOX 2 (ug/l)	61.00	45.00	250.00	1700.00	< 8.00	140.00	62.00	44.00	78.00	220.00	190.00	88.00
TOX 3 (ug/l)	59.00	35.00	260.00	1300.00	13.00	150.00	58.00	44.00	74.00	240.00	210.00	78.00
TOX 4 (ug/l)	61.00	40.00	210.00	2200.00	13.00	140.00	59.00	38.00	81.00	170.00	220.00	74.00

< Denotes non-detection at indicated detection limit

= Denotes compound concentration is equal to the detection limits
Laboratory analysis performed by ATI.

EC = Electrical Conductivity TOC = Total Organic Carbon TOX = Total Organic Halide October 1989 Monitor Well Results

TABLE 6-1 SOUTHERN CALIFORNIA CHEMICAL OCTOBER 1989 QUARTERLY SAMPLING **PURGEABLE HALOCARBONS ANALYTICAL RESULTS** MONITOR WELL SAMPLES

COMPOUND	MW01	MW02	MW03 *	MW04	MW04A	MW05	MW06B	MW07	MW08	MW09	MW10	MW11
Chloromethane	< 1.00	< 1.00	< 100,00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
Bromomethane	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
Vinyl Chloride	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
Chloroethane	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
Methylene Chloride	< 1.00	< 1.00	< 100.00	30.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	15.00	< 10.00	< 10.00
Trichlorofluoromethane	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
1,1-Dichloroethene	< 1.00	< 1.00	< 100.00	60.00	< 1.00	< 1.00	< 1.00	< 1.00	4.00	40.00	< 10.00	< 10.00
1,1-Dichloroethane	< 1.00	< 1.00	< 100.00	100.00	< 1.00	10.00	< 1.00	4.00	40.00	90.00	< 10.00	< 10.00
trans-1,2-Dichloroethene	< 1.00	< 1.00	< 100.00	20.00	< 1.00	< 1.00	< 1.00	2.00	8.00	< 10.00	< 10.00	< 10.00
Chloroform	< 1.00	< 1.00	< 100.00	= 10.00	< 1.00	31.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
1,2-Dichloroethane	< 1.00	< 1.00	< 100.00	70.00	< 1.00	10.00	< 1.00	< 1.00	< 1.00	< 10.00	50.00	70.00
1,1,1-Trichloroethane	< 1.00	< 1.00	< 100.00	= 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	- 10.00	< 10.00
Carbon Tetrachloride	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	39.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
Bromodichloromethane	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
1,2-Dichloropropane	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
cis-1,3-Dichloropropene	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
Trichloroethene	12.00	35.00	< 100.00	250.00	3.00	15.00	29.00	44.00	22.00	110.00	70.00	35.00
Dibromochloromethane	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
1,1,2-Trichloroethane	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
trans-1,3-Dichloropropene	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
2-Chloroethylvinyl ether	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
Bromoform	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
Tetrachloroethene	3.00	2.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	3.00	= 1.00	< 10.00	< 10.00	< 10.00
1,1,2,2-Tetrachloroethane	NR	NR	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	NR	NR	< 10.00	< 10.00	< 10.00
Chlorobenzene	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
1,3-Dichlorobenzene	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
1,2-Dichlorobenzene	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00
1.4-Dichlorobenzene	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00	< 10.00

Note: All results in micrograms per liter (ug/l)
Laboratory analysis performed by Enseco.
< Denotes non-detection at indicated detection limit

= Compound concentration is equal to detection limit

NR-Not Reported, compound coelutes with Tetrachloroethene and is combined with that result.

^{*} Higher detection limits due to sample matrix

TABLE 6-2 SOUTHERN CALIFORNIA CHEMICAL OCTOBER 1989 QUARTERLY SAMPLING PURGEABLE AROMATICS ANALYTICAL RESULTS MONITOR WELL SAMPLES

COMPOUND	MW01	MW02	MW03	MW04	MW04A	MW05	MW06B	MW07	MW08	MW09	MW10	MW11
Benzene	< 0.50	< 0.50	< 50.00	< 5.00	< 0.50	0.60	< 0.50	< 0.50	< 0.50	< 0.50	< 5.00	< 5.00
Toluene	< 1.00	< 1.00	< 100.00	< 10.00	< 1.00	< 1.00	< 0.10	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00
Ethylbenzene	< 1.00	< 1.00	1600.00	< 10.00	< 1.00	< 1.00	< 0.10	< 1.00	< 1.00	< 1.00	190.00	200.00
Xylenes, Tota	< 1.00	< 1.00	150.00	< 10.00	< 1.00	< 1.00	< 0.10	< 1.00	< 1.00	< 1.00	< 10.00	< 10.00

Note: All results in micrograms per liter (ug/l) < Denotes non-detection at indicated detection limit Laboratory analysis performed by Enseco.

TABLE 6-3 SOUTHERN CALIFORNIA CHEMICAL OCTOBER 1989 QUARTERLY SAMPLING METALS, CHLORIDE AND NITRATE ANALYTICAL RESULTS MONITOR WELL SAMPLES

COMPOUND	MW01	MW02	MW03	MW04	MW4A	MW05	MW06B	MW07	MW08	MW09	MW10	MW11
Cadmlum	< 0.01	< 0.01	< 0.01	0.07	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chromium, Hexavalent	< 0.05	< 0.05	< 0.05	110.00	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2.50	< 0.05	< 0.05
Chromium, Total	< 0.02	< 0.02	< 0.02	120.00	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	1.80	< 0.02	< 0.02
Copper	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Zinc	0.11	< 0.02	< 0.02	0.04	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride	710.00	100.00	470.00	1400.00	110.00	120.00	75.00	550.00	160.00	520.00	230.00	110.00
Nitrate (Nitrogen)	3.30	6.50	1.90	0.60	4.40	4.20	7.80	4.70	4.90	6.80	0.20	1.10

Note: All results in milligrams per liter (mg/l) < Denotes non-detection at indicated detection limit Laboratory analysis performed by Enseco.

July 1989 Monitor Well Results

					TABL					-			
	ļļ.			SOUTHER			CHEMICA						!
	ļļ.		_!	JULY 198			AMPLIN						
	.ļļ.	······································	PURGEA					RESULTS	3				1
	11			MON	ITOR WE	LL SAM	PLES						
	J <u> l</u> .			<u> </u>		1			<u> </u>		<u></u>	l l.	<u>.</u>
COMPOUND	M V	V01 N	1W02	MW03 N	1W04 N	/W4a I	VIW 05	MW6b N	1W07 N	1 80WI	MW09 M	IW10 M	W11
Chloromethane	<	1.00<	1.00	< 10.00 <	20.00	1.00	< 1.00	< 1.00 <	1.00	1.00	1.00<	10.00<	1.0
Bromomethane	<	1.00<	1.00	< 10.00<	20.00	1.00	< 1.00	< 1.00 <	1.00			10.00<	4
Vinyl Chloride	<	1.00<	1.00	< 10.00<	20.00	1.00	< 1.00	< 1.00 <	1.00	1.00	1.00<	10.00<	*************
Chloroethane	<	1.00<	1.00	< 10.00<	20.00	1.00	< 1.00	< 1.00 <	1.00	1.00	< 1.00 <	10.00<	
Methylene Chloride	<	1.00<	1.00	20.00	170.00	2.70	< 1.00	< 1.00 <	1.00	1.00	3.00	38.00	1.0
Trichlorofluoromethane	<	1.00<	1.00	< 10.00<	20.00	1.00	< 1.00	< 1.00 <	1.00	1.00	< 1.00 <	10.00 <	1.0
1,1-Dichloroethene	<	1.00<	1.00	< 10.00	50.00	1.00	2.00		1.00	14.00	14.00	15.00	2.0
1,1-Dichloroethane	<	1.00	1.00	< 10.00	80.00	1.00	4.00	< 1.00	15.00	74.00	28.00	12.00	4.0
trans-1,2-Dichloroethene	<	1.00<	1.00	< 10.00 <	20.00	1.00	< 1.00	< 1.00	3.00	15.00	3.00<	10.00<	1.0
Chloroform	<	1.00<	1.00	33.00<	20.00	1.00	57.00	< 1.00 <	1.00	3.00	4.00<	10.00	1.0
1,2-Dichloroethane	<	1.00<	1.00	< 10.00	120.00	1.00	< 1.00	< 1.00 <	1.00	10.00	37.00	150.00	7.0
1,1,1-Trichloroethane	<	1.00<	1.00	< 10.00<	20.00	1.00	< 1.00	< , 1.00 <	1.00	1.00	4.00<	10.00<	1.0
Carbon Tetrachloride	<	1.00<	1.00	60.00	20.00	1.00	94.00	< 1.00 <	1.00	1.00	< 1.00 <	10.00<	1.0
Bromodichloromethane	<	1.00<	1.00	< 10.00 <	20.00	1.00	< 1.00	< 1.00 <	1.00	1.00	< 1.00 <	10.00<	1.0
1,2-Dichloropropane	<	1.00<	1.00	< 10.00	20.00	1.00	< 1.00	< 1.00 <	1.00	1.00	< 1.00 <	10.00<	1.0
cis-1,3-Dichloropropene	<	1.00<	1.00	< 10.00	20.00	1.00	< 1.00		1.00	1.00	< 1.00 <	10.00<	1.0
Trichloroethene	T	13.00	67.00	120.00	290.00	5.00	46.00	29.00	25.00	43.00	57.00	180.00	29.0
Dibromochloromethane	<	1.00<	1.00	< 10.00	20.00	1.00	< 1.00	< 1.00 <	1.00	1.00	< 1.00 <	10.00<	1.0
1,1,2-Trichloroethane	<	1.00<	1.00	< 10.00	20.00	1.00	< 1.00	< 1.00 <	1.00	1.00	< 1.00 <	10.00<	1.0
trans-1,3-Dichloropropene	<	1.00<	1.00	< 10.00	20.00	1.00	< 1.00	< 1.00<	1.00	1.00	< 1.00 <	10.00<	1.0
2-Chloroethylvinyl ether	<	1.00<	1.00	< 10.00	20.00	1.00	< 1.00	< 1.00 <	1.00	1.00	< 1.00 <	10.00<	1.0
Bromoform	<	1.00<	1.00	< 10.00	20.00	1.00	< 1.00	< 1.00 <	1.00	1.00	< 1.00 <	10.00<	1.0
Tetrachloroethene	TT	1.00	1.00	< 10.00	20.00	1.00	2.00	6.00	1.00	2.00	2.00<	10.00	1.0
1,1,2,2-Tetrachloroethane	<	1.00	1.00	< 10.00	20.00	1.00	< 1.00	< 1.00<	1.00	1.00	< 1.00 <	10.00<	1.0
Chlorobenzene	<	1.00	1.00	< 10.00	20.00	1.00	< 1.00	< 1.00<	1.00	1.00	< 1.00 <	10.00<	1.0
1,3-Dichlorobenzene	<	1.00	1.00	< 10.00	20.00	1.00	< 1.00	< 1.00<	1.00	1.00	< 1.00 <	10.00<	1.0
1,2-Dichlorobenzene	<	1.00	1.00	< 10.00	20.00	1.00	< 1.00	< 1.00	1.00	< 1.00	< 1.00 <	10.00<	1.0
1,4-Dichlorobenzene	<	1.00		< 10.00	20.00			< 1.00 <				10.00<	1.0
	TT								I				
Note: All results in microgra						1							1
< Denotes non-detection at ir						1							
Laboratory analysis performed	d by	ENSECC).			1							

.

.

									LE 6-									
***************************************					5	SOUTH	ERN	CALI	ORN	IA CH	IEMIC	٩L						
					;	JULY '	1989	QUAR	TERL	Y SA	MPLIN	G						
				F	PURGE	ABLE	ARC	MATIC	SAN	IALYT	ICAL I	RES	ULTS					
***************************************						M	INC	TOR W	ELL S	SAMPI	_ES		1		П			
COMPOUND	MWC)1 N	/W02	М	W03	MW04	N	1W4a	MWOS	M'	W6b	MW	07	80WN	MW	09 I	MW10	MW11
Benzene	<	0.70	: 0	.70 <	7.00	< 14	.00 <	0.70	<	0.70 <	0.70	<	0.70 <	< 0.70	<	0.70	< 7.00	< 7.00
Toluene	<	1.00 <	: 1	.00<	10.00	< 20	.00 <	1.00	<	1.00 <	1.00	<	1.00 <	< 1.00	<	1.00	< 10.00	< 10.00
Ethylbenzene	<	1.00 <	: 1	.00<	10.00	140.	00<	1.00	<	1.00 <	1.00	<	1.00	< 1.00	<	1.00	< 10.00	< 10.00
Xylenes, Tota	<	1.00 <	: 1	.00 <	10.00	40.	00<	1.00	<	1.00 <	1.00	<	1.00	< 1.00	<	1.00	30.00	90.00
Note: All res	ults	in micro	grams	per	liter (ug	/l).												
< Denotes no	n-det	ection a	at indi	cated	detection	n limit.								·				
Laboratory ana	lvsis	perform	ed by	ENSE	CO.						***************************************			1				

•

•

. . . .

					T	ABLE 6-	3	T	: :		: :	
				SOU		ALIFORN	•					
			META	LS, CLOF		NITRATI			ULTS			mandage of the color of the col
COMPOUND	MW01	MW02	M W 0 3	M W 0 4	MW4a N	1W05	MW6b N	MW07	M W O B	MW09 N	1W10	MW11
Cadmium	0.01	< 0.01	< 0.01	0.08	< 0.01<	0.01	< 0.01	0.01	0.01	< 0.01<	0.01	< 0.0
Chromium, Hexavalent	< 0.05	< 0.05	< 0.05	120.00	< 0.05 <	0.05	< 0.05	0.05	0.05	< 0.05	0,05	< 0.0
Chromium, Total	0.06	0.06	0.06	98.00	0.13	0.04	0.04	0.03	0.06	0.17	0.11	< 0.0
Copper	0.03	< 0.02	< 0.02	0.06	< 0.05 <	0.05	< 0.05	0.05	0.02	0.02<	0.05	0.1
Zinc	0.06	0.04	0.20	0.09	0.08	0.09	0.09	0.04	0.05	0.08	0.15	0.0
 Chloride	490.00	130.00	380.00	900.00	120.00	120.00	82.00	300.00	270.00	190.00	180.00	140.0
Nitrate (Nitrogen)	4.60	6.90	3.40	0.60	< 0.20	10.40	9.20	4.50	32.00	3.20<	0.20	0.2
Note: All results in millig	rams per lite	r (mg/l).						1	-			
< Denotes non-detection at								1	1			
Laboratory analysis perform	ed by ENSEC	0.										

	SOUTHE	TABL RN CALIF		MICAL		
	JULY 19	989 QUAR	TERLY SAM	PLING		
RCRA IN	DICATOR PAI				NALYSES)	
	MO	NIIOH WE	LL SAMPLE	.5		
COMPOUND	MW01 M	W 0 2 N	1W03 M	W04 M	W04a M	W 0 5
TOX 1 (mg/l)	0.05	0.08	0.13	0.30<	0.01	0.20
TOX 2 (mg/l)	0.10	0.08	0.08	0.30<		0.20
TOX 3 (mg/l)	0.07	0.08	0.14	0.10<	0.01	0.20
TOX 4 (mg/l)	0.05	0.06	0.08	0.10<	0.01	0.15
pH 1 (lab units)	7,11	7.32	7.05	6.67	7.44	6.83
pH 2 (lab units)	7.07	7.33	7.05	6.67	7.42	6.77
pH 3 (lab units)	.7.08	7.32	7.04	6.67	7.42	6.80
pH 4 (lab units)	7.07	7.34	7.06	6.67	7.43	6.78
EC 1 (umhos/cm)	2100.00	1200.00	1800.00	3200.00	1200.00	1500.00
EC 2 (umhos/cm)	2030.00	1100.00	1800.00	3200.00	1200.00	1500.00
EC 3 (umhos/cm)	2010.00	1200.00	1800.00	3100.00	1200.00	1500.00
EC 4 (umhos/cm)	2100.00	1200.00	1800.00	3100.00	1300.00	1500.00
TOC 1 (mg/l)	8.00<	1.00	17.00	140.00<	1.00<	1.00
TOC 2 (mg/l)	9.00<	1.00	17.00	170.00<	1.00<	1.00
TOC 3 (mg/l)	8.00<		17.00	130.00<		1.00
TOC 4 (mg/l)	8.00<	1.00	18.00	70.00<	1.00<	1.00
Note: Laboratory ana	i i i i i i i i i i i i i i i i i i i	ENSECO.				
< Denotes non-deter						

				(continued				
		SOUTH JULY		FORNIA CH RTERLY SA	HEMICAL			
RCRA IN	אוטור			S (QUADR		ANALYSES	3	
nona ir	1DIC			ELL SAMP		ANALIGE	7	
	\exists				 			
COMPOUND	M١	W6b \	1W07	M W 0 8	MW09	MW10	MW11	
TOX 1 (mg/l)		0.03	0.40	0.13	0.22	0.10	0.	. 3 3
TOX 2 (mg/l)		0.13	0.01	0.16	0.20	0.20	0.	. 0 7
TOX 3 (mg/l)		0.90	0.03	0.17	0.33	0.10	0.	. 0 5
TOX 4 (mg/l)	<	0.01	0.14	0.14	0.45	0.10	0.	. 1 4
pH 1 (lab units)		7.30	7.68				er den man men men men men men men men men men me	. 43
pH 2 (lab units)		7.28	7.71	7.33	7.15	7.31	7.	. 4 2
pH 3 (lab units)		7.32	7.64					. 46
pH 4 (lab units)		7.26	7.62	7.19	7.19	7.31	1 7.	. 4 3
EC 1 (umhos/cm)		1200.00	1900.00	1700.00	1500.00		 	. 0 (
EC 2 (umhos/cm)		1200.00	1900.00	1700.00	1500.00	1400.00	1400	.00
EC 3 (umhos/cm)		1200.00	1900.00	1600.00	1500.00	····	.	.00
EC 4 (umhos/cm)		1200.00	2000.00	1700.00	1400.00	1400.00	1400	. 0 (
TOC 1 (mg/l)	<	1.00 <	1.00	4.00	11.00	90.00	10	.00
TOC 2 (mg/l)	<	1.00<	1.00	4.00	13.00	. 		.00
TOC 3 (mg/l)	<	1.00<	1.00		· · · · · · · · · · · · · · · · · · ·			.00
TOC 4 (mg/l)	<	1.00	1.00	3.00	12.00	1.00	9	.00
Note: Laboratory and				t				

April 1989 Monitor Well Results

					000		BLE 6-1	011516	<u>.</u>				
								CHEMIC					
The second second second second second				DUD	APRIL 1	989 QU	ARTERLY	SAMPL	ING				
				PURC	SEABLE HA	LOCARI	BONS AN	ALYTICA	L RESUL	TS			
COMPOUND	MWO	1 1	M W 0 2	MWO	3* MW04	MW4a	M W 0 5	MW6b	M W 0 7	MW08	M W 0 9	MW10	M W 1 1 '
Chloromethane	< 1.0	0 <	< 1.00	< 5.00	< 5.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
Bromomethane	< 1.0		< 1.00	< 5.00		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
Vinyl Chloride	< 1.0		< 1.00	< 5.00		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
Chloroethane	< 1.0		< 1.00	< 5.00		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
Methylene Chloride	< 1.0		< 1.00	< 5.00	terror control of the set of the second second second		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
Trichlorofluoromethane	< 1.0		< 1.00	< 5.00		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
1,1-Dichloroethene	< 1.0		< 1.00	23.0			< 1.00	= 1.00	< 1.00	6.00	4.00	< 1.00	20.00
1,1-Dichloroethane	< 1.0		< 1.00	11.0			< 1.00	< 1.00	4.00	36.00		< 1.00	8.80
rans-1,2-Dichloroethene	< 1.0		< 1.00	< 5.00		< 1.00	< 1.00	< 1.00	2.00	< 1.00	< 1.00	< 1.00	< 5.00
Chloroform	< 1.0		< 1.00	35.0			73.00		< 1.00	< 1.00	< 1.00	< 1.00	15.00
1,2-Dichloroethane	< 1.0		< 1.00	36.0		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	8.00	< 1.00	12.00
1,1,1-Trichloroethane	< 1.0		< 1.00	< 5.00		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
Carbon Tetrachloride	< 1.0		< 1.00	47.0		< 1.00		0 < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
Bromodichloromethane	< 1.0		< 1.00	< 5.00	< 5.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
1,2-Dichloropropane	< 1.0		< 1.00	< 5.00	< 5.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
cis-1,3-Dichloropropene	< 1.0	0 -	< 1.00	< 5.00		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
Trichloroethene		00	45.00	110	00 280.0	0 7.00	65.00	37.00	47.00	23.00	24.00	23.00	39.00
Dibromochloromethane	< 1.0	0	< 1.00	< 5.00	< 5.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
1,1,2-Trichloroethane	< 1.0	0 -	< 1.00	< 5.00	< 5.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
trans-1,3-Dichloropropene	< 1.0	0 -	< 1.00	< 5.00	< 5.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
2-Chloroethylvinyl ether	< 1.0	0	< 1.00	< 5.00	< 5.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
3romoform	< 1.0	0 -	< 1.00	< 5.00	< 5.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
Fetrachloroethene •	4.0	0 4	< 1.00	< 5.00		< 1.00	< 1.00	3.00	2.00	< 1.00	< 1.00	5.00	< 5.00
1,1,2,2-Tetrachloroethane	N	R ·	< 1.00	< 5.00	< 5.00	< 1.00	< 1.00	NR	NR	< 1.00	< 1.00	NR	< 5.00
Chlorobenzene	< 1.0	0 .	< 1.00	< 5.00	< 5.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
1,3-Dichlorobenzene	< 1.0	0	< 1.00	< 5.00		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
1,2-Dichlorobenzene	< 1.0		< 1.00	< 5.00		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
,4-Dichlorobenzene	< 1.0		< 1.00	< 5.00		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 5.00
< Denotes non-detection at in	dicated	dete	ection lim	it	Note: A	II results	in microgra	ıms per lite	er (ug/l)				
= Compound concentration is								by ENSEC		here noted			
Duplicate sample analytical													
NR Denotes not reported, co						nd is comb	ined with the	nat result			1	***************************************	

					i	ABLE					
	<u> </u>	<u> </u>	1					HEMICA			
	ļ		- BUD					AMPLIN			
			PUR	GEABLE	AHOM	ATICS	MALY	HUAL H	ESULTS		
***************************************	<u> </u>	- 		<u> </u>							
COMPOUND	M W 0 1	M,W02	MW03	M W 0 4	MW4a	M W 0 5	MW6b	M W 0 7	MW08 MW09	M W 10	MW11
					<u> </u>						
Benzene	< 0.70	< 1.00	< 50.00	< 5.00	< 0.70	< 1.00	< 0.70	< 0.70	< 1.00 < 0.70	< 0.70	< 500.00
Toluene	< 1.00	< 1.00	< 50.00	23.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00 < 1.00	< 1.00	7500.00
Ethylbenzene	< 1.00	< 1.00	1200.00	15.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00 < 1.00	< 1.00	2600.00
Xylenes, Total	3.00	< 1.00	60.00	50.00	< 1.00	< 1.00	< 1.00	= 1.00	< 1.00 < 1.00	7.00	11000.00
< Denotes non-	detection	at indicate	ed detection li	ii mit					ograms per liter	(ug/l)	
= Compound	concentra	ition is equ	al to detection	n limit		Laborate	ory analy	sis perfori	med by ENSECO	1	

•

.

•

•

.

.

										TAB	LE	6-3					Ī						\Box	
								SOUTH	EF	RN CALI	F	DRNIA	CI	HEMIC	Αl			1	1	****************			•	••••••
										9 QUA							-		-					
				Λ	ΛE	TALS,				AND N							UL	TS	1					
							ļ		ļ		ļ		ļ				ļ		ļ					
COMPOUND	M'	W01	M۱	V02	M۱	W03	М	W04	М	W4a	M	W05	M	W6b	М	W07	М	W08	М	W09	М	W10	М	W11
Cadmium	<	0.01	<	0.01	<	0.01	-	0.05	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	·<	0,01	<	0.01	<	0.01
Chromium, total		0.10		0.05		0.07	1	100.00		0.05		0.04		0.06	-	0.02	1	0.03		0.06		0.08		0.04
Соррег	<	0.02	<	0.02	<	0.02	=	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Zinc	<	0.02	<	0.02	<	0.02	<	0.02		0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02-	<	0.02	<	0.02
Chromium, hexavalent	<	0.05	<	0.05	<	0.05		43.00	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Chloride	_	660.00	-	150.00		420.00	+-	990.00	╁	120.00	-	80.00	-	85.00	-	180.00	-	120.00	1-	140.00	-	270.00		120.00
Nitrate (Nitrogen)	<	0.20		7.00		3.10	1	0.90		5.50	,	8.20		8.80	Ϊ.	3.40	T	2.80	1	4.10		6.30		1.70

.

.

January 1989 Monitor Well Results

TABLE 3-1 PRIMARY SAMPLE ANALYSES

				January 1							
				Southern	California	Chemica	ıl				
			HALOGEN	IATED VOL	ATILE ORG	GANIC CON	IPOUNDS	*			
				(Conce	entrations	in ug/l)					
MW01	MW02	MW03	MW04	MWO4A	MWO5	MWO6B	MWO7	8OWM	MWO9	MW10	MW11
ND .02	ND 0.2	ND 0.2			ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .02	ND 0.2	ND 0.2	ND 0.2		ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .01	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .02	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .01	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .05	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .01	ND 0.2	ND 0.2	2 2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND 1.0	ND 0.2	3.2	1 4	ND 0.2	2.1	ND 0.2	2.2	ND 0.2	1 6	ND 0.2	1
ND .01	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .01	ND 0.2	4.4	3 6	ND 0.2	ND 0.2	ND 0.2	2.9	3 0	3 4	2.8	3.2
0.2	ND 0.2	1 3	3.7	ND 0.2	7.4	ND 0.2	ND 0.2	ND 0.2	8.9	ND 0.2	0.88
ND .01	ND 0.2	ND 0.2	0.68	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	2.9	ND 0.2	ND 0.2
ND .01	ND 0.2	1 5	ND 0.2	ND 0.2	5.6	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
0.7	ND 0.2	240	2 0	ND 0.2	2 9	ND 0.2	ND 0.2	ND 0.2	4.3	3.7	2 1
19	6 0	7 4	120			5 7	3 5	6 9	· 5 5	3 2	3 4
ND .02	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .01	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND 10.0	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
	ND 0.2	ND 0.2	ND 0.2					ND 0.2			ND 0.2
ND .01	ND 0.2	ND 0.2	ND 0.2					ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .01	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
2.8	1.8	4.6	1.6	ND 0.2	ND 0.2	7	2.1	4.3	3.1	1.2	ND 0.2
ND .01	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .01	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .02	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .02	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .01	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .01	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
ND .01	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2
	ND .02 ND .01 ND .05 ND .01 ND .05 ND .01 ND .05 ND .01	ND .02 ND 0.2 ND .01 ND 0.2	ND .02 ND 0.2 ND 0.2 ND .02 ND 0.2 ND 0.2 ND .01 ND 0.2 ND 0.2 ND .02 ND 0.2 ND 0.2 ND .01 ND 0.2 ND 0.2 ND .02 ND 0.2 ND 0.2 ND .01 <	MW01 MW02 MW03 MW04 ND .02 ND 0.2 ND 0.2 ND 0.2 ND .01 ND 0.2 ND 0.2 0 .6 8 ND .01 ND 0.2 ND 0.2 0 .6 8 ND .01 ND 0.2 ND 0.2 ND 0.2 ND .01 ND 0.2 ND 0.2 ND 0.2	MW01 MW02 MW03 MW04 MW04A Mu014 Mu014	ND .02 ND 0.2 N	MW01 MW02 MW03 MW04 MW04A MW05 MW06B	MW01 MW02 MW03 MW04 MW04A MW05 MW06B MW07 MW0.2 ND 0.2 ND 0.2	No. No.	ND .02 ND 0.2 N	MW01

^{*} Analyzed for Montgomery Laboratories by Vista Laboratories, Wheat Ridge, Colorado.

TABLE 3-1 PRIMARY SAMPLE ANALYSES (cont'd)

					January 1989 Quarterly Sampling												
		1			Southern	California	Chemica	al									
		ARON	MATIC VOL	ATILE ORG	ANICS, TO	TAL ORGA	ANIC CARE	SON & TOT	ALORGAN	IC HALOG	ENS						
									•								
COMPOUND	MW01	MW02	MW03	MW04	MWO4A	MWO5	MWO6B	MWO7	MWO8	MWO9	MW10	MW11					
PURGEABLE AROMATICS *																	
(Concentrations in ug/I)	ND 04	ND o c	ND o 5	ND o F	110.05	ND 0.5	ND 0.5	110.05	110.05	115.05	115.0.5						
1,3-Dichlorobenzene	ND .01	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5					
1,4-Dichlorobenzene	ND .01	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5					
1,2-Dichlorobenzene	ND .01	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5					
Total Xylenes	ND .01	ND 0.5	1500	2 9	1.3	ND 1.0	ND 1.0	3.6	1.6	ND 1.0	ND 1.0	1.5					
Benzene	ND .01	ND 0.5	7.4	ND 0.5	ND 0.5	0.9	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND 0.5					
Toluene	ND .01	ND 0.5	1 7	1 0	ND 0.5	ND 0.5	ND 0.5	1.4	ND 0.5	ND 0.5	ND 0.5	ND 0.5					
Ethylbenzene	ND .01	ND 0.5	4900	1 5	ND 0.5	ND 0.5	ND 0.5	1.2	ND 0.5	ND 0.5	0.54	4 3					
TOTAL OPCANIC CAPPON **																	
TOTAL ORGANIC CARBON **																	
(Concentrations in mg/l)		ND o F	400 0	400	115 0 5	0 = 0	115.05										
TOC #1	6.9	ND 0.5	160.0	16.0	ND 0.5	65.0	ND 0.5	3.6	1.1	2.1	2.0	5.4					
TOC #2	7.8	ND 0.5	160.0	14.0	ND 0.5	64.0	ND 0.5	3.7	1.2	1.7	1.9	5.8					
TOC #3	7.1	ND 0.5	160.0	14.0	ND 0.5	63.0	ND 0.5	3.6	1.2	1.8	2.0	5.3					
TOC #4	7.6	ND 0.5	160.0	13.0	ND 0.5	63.0	ND 0.5	3.5	1.2	1.5	2.0	5.2					
TOTAL ORGANIC HALOGEN **																	
(Concentrations in ug/l)																	
TOX #1	6 2	5 0	220	360	4 9	5 8	4 6	9 0	130	180	3 8	5 8					
TOX #2	4 2	47	230	260	38	4 2	4 8	4 2	110	170	3 6	3 8					
TOX #3	41	5 7	220	270	19	4 2	3 6	80	9 2	170	3 3	4 0					
· · · · · · · · · · · · · · · · · · ·	4 5	3 9	220	300	29	3 7	4 6	130	130	150	5 1	4 6					
TOX #4	4 3	<u> </u>	220	300	29	31	40	130	130	130	<u> </u>	40					

^{*} Analyzed for Montgomery Laboratories by Vista Laboratories, Wheat Ridge, CO; ** Analyzed by Montgomery Laboratories.

TABLE 3-1 PRIMARY SAMPLE ANALYSES (cont'd)

				Janua	ry 1989 Q	uarterly S	ampling					
				Sout	hern Califo	ornia Chei	nical					

			ME	TALS, pH	AND ELEC	TRIC COI	IDUCTIVI	Υ*				
COMPOUND	MW01	MW02	MW03	MW04	MWO4A	MWO5	MWO6B	MWO7	MWO8	MWO9	MW10	MW11
METALS (mg/l)												
Chromium VI (hex)	ND .01	0.017	ND .01	33.0	0.01	ND .010	ND .010	ND .010	ND .010	0.45	ND .010	ND .010
Chlorine	524.0	77.0	302.0	418.0	105.0	98.0	66.0	744.0	145.0	248.0	139.0	110.0
Nitrate (N)	5.2	7.4	0.92	ND 0.2	5.9	0.3	8.7	5.4	5.4	7.8	0.43	2.0
Nitrate (NO3)	22.9	33.0	4.0	ND 0.9	26.0	1.3	38.0	24.0	24.0	34.0	1.9	8.8
Chromium (total)	0.014	0.022	ND .014					ND .014			0.029	ND .014
Cadmium	ND .003	ND .003					ND .003		ND .003		ND .003	
Zinc	0.015	ND .006			0.008			ND .006		0.008		ND .006
Copper	ND .009	ND .009	ND .009	ND .009	ND .009	ND .009	ND .009	ND .009	ND .009	ND .009	ND .009	ND .009
pH												
Analysis #1		7.5	7.1	7.1	7.7	7.4	7.4	9.1	7.4	7.3	7.8	7.6
Analysis #2		7.5	7.1	7.1	7.7	7.4	7.4	9.1	7.4	7.3	7.8	7.6
Analysis #3		7.5	7.1	7.1	7.7	7.4	7.4	9.1	7.4	7.3	7.8	7.6
Analysis #4	7.1	7.5	7.1	7.1	7.7	7.4	7.4	9.1	7.4	7.3	7.0	7.0
EC (umohs/cm)												
Analysis #1	2530	1320	1950	2120	1470	1370	1290	3390	1420	1700	1410	1480
Analysis #2	2500	1320	1890	2120	1470	1370	1290	3390	1420	1680	1410	1480
Analysis #3	2520	1320	1900	2120	1470	1370	1290	3390	1430	1680	1410	1480
Analysis #4	2560	1320	1890	2120	1470	1370	1290	3390	1430	1680	1410	1480

^{*} Analyzed by Montgomery Laboratories.

Kleinfelder Analytical Data

TABLE 1
WATER-QUALITY DATA
HONITORING WELL #1
SOUTHERN CALIFORNIA CHÉMICAL
PROJECT 50-1014-03

							DAT	E SAMPLEO			*	***************************************		
	2/85-3/85	7/85-8/85	3/86	5/86	7/86	9/86	12/86	3/87	6/87-7/87	10/87	2/88	5/88	6/88	9/88
COMPONIND						EPA Inc	dicator Me	surement (CFR 40 265.92)				
pH (units)	7.3		7.1		7.2	7.0	7.38	6.8	7.0	6.9	7.1		7.05	
10C (mg/l)	3.7		19		35	21	2 DK	ND 3	13	32	10		8.5	
TOX (mg/l)	ND . 05		ND.08		ND.08	ND.08	NO.08	80.CK	ND.08	ND.08	0.1		0.038	
Sp. Cond. (unhos/cm)	2300		3400		1650	3600	3200	2800	3400	3800	2975		2500	
						si	te-Specifi	Indicator	Chemicals					
Chromium (total) (mg/l) ND.0005		ND.03		ND.03	ND.03	ND.03	ND.04	ND.04	ND.04	0.08	ND.02	0.03	0.07
Chromium (HEX) (mg/l)	ND.05		ND.02		ND.02	ND.02	ND.02	ND.02	ND.02	ND.02	ND.1		NO.05	ND.05
Codinium (mg/l)	ND.0002		ND.009		ND.02	ND.01	ND.01	NO.01	ND.01	ND.02	ND.02		ND.01	ND.01
Copper (mg/l)	80.0H		ND.02		ND.01	ND.04	.ND.04	ND.02	0.10	ND.02	0.04			ND.02
Zinc (ing/l)	HD.019		0.18		0.04	80.0M	0.018	ND.03	0.06	HD.03	0.04		0.07	0.08
Chloride (mg/l)	330		300		650	920	700	570	720	770	430		460	630
Nitrate as N (mg/l)	7.0		3.7		0.5	1.3	4.06	5.3	ND.1	2.3	4.5		5.2	2.9
Hitrate as NO ₃ (mg/l)	- 31		17		18	11	18	23	ND . 4	11	19		23	
Hote: NO 1 = Chemical	was not d	etected at	1 mg/l.					•						•
							rganic Con	pounds (EPA	Method 624)					
1,1-Dichloroethane (ug	/ ()		ND 1		ND 1	ND 1	но 1	ND . 5	ND . 5	ND.5	ND 1		ND 1	
1,1-Dichloroethylene (ND 1		NO 1	NO 1	, ND 1	ND.5	NO.5	ND.5	HO 1		ND 1	
1,2-Dichloroethane (ug			HO 1		HO 1	2.	1	0.5	1	1	ND 1		ND 1	
Benzene (ug/l)			HD 1		NO 1	ND 1	NO 1	NO.5	ND.5	ND.5	ND.7		ND.7	
Carbon Tetrachloride ((ug/l)		HO 1		NO 1	NO 1	ND 1	ND.5	ND.5	ND.5	ND 1		ND 1	
Chloroform (ug/l)			ND 1		HO 1	ND 1	ND 1	NO.5	ND.5	ND.5	NO 1		NO 1	
Ethylbenzene (ug/l)			ND 1		NO 1	ND 1	NO 1	ND.5	ND.5	ND.5	HO 1		. NO 1	
Irichloroethylene (ug,	(1)		16		16	18	18	9	11	2.4	4	•	15	
Toluene (ug/l)			NO 1		NO 1	ND 1	NO 1	ND.5	ND.5	ND.5	HD 1		ND 1	
Xylene (ug/l)			ND 1		NO 1	NO 1		ND.5	NO.5	ND.5	1 סא		NO 1	
			ND 1		ND 1	NO 1	ND 1	ND2	ND.5	1.7	NO 1		ND 1	

Hote: ND 1 = Compound was not detected at 1 ug/l.

TABLE 2
WATER-QUALITY DATA
HONITORING WELL #2
SOUTHERN CALIFORNIA CHEMICAL
PROJECT 50-1014-03

							DA	TE SAMPLED						·
	2/85-3/85	7/85-8/85	3/86	5/86	7/86	9/86	12/86	3/87	6/87-7/87	10/87	2/88	5/88	6/88	9/88
COMPONIND						EPA Inc	dicator Ne	asurement (CFR 40 265.92	2)		···		
pli (units)	7.0		7.4		7.7	7.4	7.68	7.1	7.1	7.12	7.27		7.35	
TOC (mg/l)	34		4.8	•	E DH	NO3	но3	ND3	ND3	ND3	ND 1		ND 1	
TOX (mg/l)	NO.05		NO.08		но.08	80.DK	80.DM	80.DM	80.DM	80.0M	0.04		0.032	
(unhos/cm),	2300		1900		1800	2100	2280	1900	3400	1500	1550		1500	
						s I	te-Specifi	c Indicator	Chemicals					
Chromium (total) (mg/l) HD.0005	ио.033	ND.03		ND.03	ND.03	ND.03	ND.04	ND.04	ND.04	0.05	ND.02	ND.02	0.06
Chromium (HEX) (mg/l)	ND.05	ND.033	ND.03		ND.02	ND.02	ND.02	ND.02	ND.02	ND . 02	ND.1		NO.05	ND . 05
Cadmium (mg/l)	ND.0002		ND.009		NO.01	110.03	ND.01	ND.01	ND.01	ND.02	ND.02		ND.01	ND.01
Copper (mg/l)	ND.08		ND.02		NO.02	NO.04	ND .04	NO.02	NO.02	ND.02	0.04			ND.02
Zinc (mg/l)	ND.019		ND.03		ND.04	80.DM	0.021	ND.031	ND.031	ND.03	0.03		ND.02	0.03
Chloride (mg/l)	270		180		220	410	510	250	700	180	110		160	160
Nitrate as N (mg/l)	2.1		5.8		5.4	5.0	6.25	7.2	8.8	7.2	7.2		7.2	7.1
Hitrate as NO ₃ (mg/l)			26		24	22	27.7	32	39	32	32		35	
Note: NO 1 ≈ Chemical	was not d	etected at	1 mg/l.											
							Organic Con	npounds (EPA	Nethod 624)					
					. •									
1,1-Dichloroethane (ug		4	3		ND 1	5	9	21	20	2.5	HD 1		NO 1	
1,1-Dichloroethylene (ug/l)	3	1 CH		NO 1	3	5	0.9	11	0.94	ND 1		NO 1	
1,2-Dichloroethane (ug	/ ()	NO 1	NO 1		3	1	ND 1	ир.5	2,2	ND.5	ND 1		ND 1	
Benzene (ug/l)		ND 1	ND 1		NO 1	NO 1	ND 1	ND.5	ND.5	ND.5	ND.7		ND.7	
Carbon Tetrachloride ((ug/l)	NO 1	NO 1		HD 1	NO 1	ND 1	ND.5	ND.5	ND.5	ND 1		ND 1	
Chloroform (ug/l)		ND 1	NO 1		ND 1	2	. 2	1	ND.5	0.73	1 DM		NO 1	
Ethylbenzene (ug/l)		ND 1	NO 1		3	2	NO 1	ND.5	6.2	ND.5	ND 1		ND1	
Trichtoroethylene (ug/	/l)	21	22		12	38	67	20	93	40	5		23	
Toluene (ug/l)		NO 1	NO 1		3	NO 1	1 סא	ND.5	ND.5	ND.5	НО 1		₩О 1	
rotuene (ug/t)														
Xylene (ug/l)		ND 1	ND 1		2	ND 1		ND.5	ND.5	ND.5	ND 1		ND 1	

Note: ND 1 = Compound was not detected at 1 ug/l.

TABLE 3
WATER-QUALITY DATA
HONITORING WELL #3
SOUTHERN CALIFORNIA CHEMICAL
PROJECT 50-1014-03

							DA	E SAMPLED						
	2/85-3/85	•7/85-8/85	3/86	5/86	7/86	9/86	12/86	3/87	6/87-7/87	10/87	2/88	5/88	6/88	9/88
COMPOUND						EPA In	lcator Me	surement (C	CFR 40 265.92	2)				
nu (unita)	7.4		7.0		7.3	7.3	7 55	4.0	7.0		/ 70		7.40	
pH (units) TOC (mg/l)	16		190 :		7.2 44	7.2 29	7.55 31	6.9 20.5	7.0 21	5.9 50	6.78 135		7.10 81	
10X (mg/l)	0.17		ND.08		.18	.17	.21	.22	.15	.27	.10		0.24	
Sp. Cond. (unhos/cm)	1700		1500		2200	2200	2400	2300	2200	3300	1575		2100	
						12	te-Specifi	c Indicator	Chemicals		,			
***************************************						X	11_11_1							
Chromium (total) (mg/l) HD.0005	ND.033	ND.03		ND.03	ND.03	ND.03	ND.04	ND.04	ND.04	.08	ND.02	ND.02	0.07
Chromium (HEX) (mg/l)	ND.05	ND.033	ND.02		NO.02	ND.02	NO.02	ND.02	ND.02	ND.02	P. OK		ND . 05	ND.05
Cadmium (mg/t)	ND.0002	ND.011	ND .009		ND.01	0.01	ND.01	ND.01	ND.01	ND.02	ND.02		ND . 01	ND.01
Copper (mg/l)	80.DH		ND.02		NO.02	ND.04	ND.04	ND.02	ND.02	ND.02	ND.02		0.02	0.02
Zinc (mg/l)	HD.019		0.26		ND.04	80.DK	0.021	ND.031	ND.031	ND.03	ND.02		0.04	0.02
Chloride (mg/l)	170		76		400	520	550	420	380	740	190		350	840
Nitrate as N (mg/l)	3.0		ND 1		6.5	4.1	4.81	3.4	3.8	5.2	ND.2		2.7	.4.8
Nitrate as HO ₃ (mg/l)	13		ND4.4		29	18	21.3	15	17	23	ND 1		12	
Note: ND 1 = Chemical	was not d	etected at	1 mg/l.											
							rganic Con	pounds (EPA	Method 624)					
				_		-		,	1.4	4.0	ND 10		ND50	ND 25
1,1-Dichloroethane (ug		6	ND50	5	4	5	5	4	1.6 3.9	6.9 15	ND 10		ND50	ND 25
1,1-Dichloroethylene		14	ND50	11	7	13	17	7.8		וס אס.5	36		ND50	ND 25
1,2-Dichloroethane (ug	3/ ()	ND 1	ND50	9	6	7	11	18	2.11 ND.5	ю.5 ND.5	30 ND 10		ND35	NO 17
Benzene (ug/l)		9	ND50	3	ND 1	3.	2	ND.5		ни.э 87	ND 10		NOSO	ND 25
Carbon Tetrachloride	(ug/l)	73	ND50	78	110	58	87	50	73					
Chloroform (ug/l)		46	ND50	36	97	33	. 45	20	22	ND . 5	NO 10		ND50	ND 25
Ethylbenzene (ug/l)		ND 1	95000	1100	ИО 1	310	4	ND.5	ND.5	290	8500		1700	1000
Trichloroethylene (ug,	/ ()	320	ио50	160	170	200	160	98	70	150	14		150	150
Toluene (ug/l)		2	15000	11	HD 1	ND 1	ND 1	ND.5	ND.5	ND.5	8500		550	NO25
Xylene (ug/l)		ND 1	20000	2000	йо 1	10		ND.5	NO.5	ND.5	23000		850	200
Hethylene Chloride (u	9/1)	НО 1	ND50	ND 1	Н D 1	2	HD 1	ND 2	ND 2	9.6	ND 10		ND 50	100

Hore: ND 1 = Compound was not detected at 1 ug/t.

TABLE 4
WATER-QUALITY DATA
MONITORING WELL #4
SOUTHERN CALIFORNIA CHEHICAL
PROJECT 50-1014-03

							DAT	E SAHPLED						
	2/85-3/85	7/85-8/85	3/86	5/86	7/86	9/86	12/86	3/87	6/87-7/8	7 10/87	2/88	5/88	6/88	9/88
COMPOUND						EPA Ind	licator Hea	surement (C	FR 40 265,9	2)			~~~	
pli (units)	6.3		7.1		7.1	6.6	7.4	6.7	6.3	6.3	6.6		6.55	
10C (mg/l)	36		26		110	79	98	26.5	133	90	46		57	
10X (mg/t)	оо Оо. Об		.26		.19	2.3	1.40	.68	2.10	1.3	.36		0.73	
Sp. Cond. (unhos/cm)	6400		3600		3500	4250	4950	4000	11000	7300	4625		5900	
						şit	e-Specific	Indicator	Chemicals					
					400	100	470	00	440		1/0	270	210	***
Chromium (total) (mg/l)		550	61		120	180	170	98	440	190	140	238	218	180
Chromium (HEX) (mg/l)	500	500			120	180	170	100	430	232	140-		84 •	170
Cadmium (mg/l)	0.78	0.92	0.035		0.04	0.09	0.07	0.05	ND .01	.33	.06		0.13	0.12
Copper (mg/l)	80. DK		ND .02		ND .02	ND .04	KO .03	ND .02	ND .02	ND .02	.03		0.04	NO.02
linc (mg/l)	0.06		KO. ON		ND .04	80. DK	ND .007	ND .03	ND .03	ND .03	KD .03		0.15	ND .02
Chloride (mg/l)	2300		1100		770	1300	1400	960	3500	1800	790		1600	1400
Nitrate as N (mg/l)	18	12	ND 13		0.5	1.3	1.1	1. DH	ND .7	1.3	.2		0.75	3.9
Nitrate as NO ₃ (mg/l)	. 81	55	ND 55		2.4	5.6	5.0	ND .4	ИО 3	5.8	1.1		3.3	
Note: ND 1 = Chemical	was not di	etected at	1 mg/l.											
						0	rganic Com	xounds (EPA	Hethod 624)				
1,1-Dichloroethane (ug	v11	100	100	42	57	61	120	27	110	120	70		130	100
1,1-Dichloroethylene (100	42	34	41	61	67	20	94	110	56		60	50
1,2-Dichloroethane (ug		ND 50	17	34	61	12	140	74	74	100	35		90	70
Benzene (ug/l)	,, ,,	ND 50	16	9	ND 1	10 סא	5	ND 5	ND 5	ND .5	ND 14		20	ND.7
	un/i)	ND 50	ND 1	, 1 סא	ND 1	ND 10	ND 1	ND 5	ND 5	1.5	ND 20		ND 10	ND 10
Carbon Tetrachloride (ug/t)	ND 50	7	3	8	10	12	6.2	30	23	20 מא		23	ND 10
Chloroform (ug/l)			-	50	1100	670	220	160	1500	380	70		40	NO 10
Ethylbenzene (ug/l)		3000	36		200	280	290	180	280	190	110		250	250
Trichloroethylene (ug/	/()	550	140	170				240	3700	580	180		90	NO 10
Toluene (ug/l)		8300	130	25	330	260	220				200	-	120	40
Xylene (ug/l)		10000	100	30	300	300	300	731	2700 140	570 110	200 НD 20		110	70
Methylene Chloride (ug	g/ ()	100	12	ND 1	17	ND 10	ND 1	27	140	110	אט בט		110	10

Note: HD 1 = Compound was not detected at 1 ug/1.

TABLE 5
WATER-QUALITY DATA
MONITORING WELL #4A
SOUTHERN CALIFORNIA CHEMICAL
PROJECT 50-1014-03

							DAT	E SAMPLED						
	2/85-3/85	7/85-8/85	3/86	5/86	7/86	9/86	12/86	3/87	6/87-7/87	- 10/87	2/88	5/88	6/88	9/88
ОНРОИНО					····	EPA Inc	ilcator Hea	surement ((CFR 40 265.92)				
oH (units)		6.8	7.5		7.6	7.5	7.7		7.7	7.2	7.3		7.45	
TOC (mg/l)	•	40	8.3	•	ND3	ио 3	ND3		ND3	ND3	ND 1		NO 1	
IOX (mg/l)		ND . 05	80.DK		80. DH	80.0M	ND.08		-14	ND.03	ND.01		0.15	
Sp. Cond. (unhos/cm)		1500	1500		850	1400	1525		1600	1700	1662		1550	
						SI	te-Specific	Indicator	Chemicals					
Chromium (total) (mg/l		ND.03	ND.03		ND.03	ND.03	ND.03		ND . 04	ND.04	.03	.02	ND .02	0.06
Chromium (HEX) (mg/l)		ND.5		•	ND.02	ND.02	ND.02		ND .02	ND.02	ND . 1		ND . 05	ND.05
Cadmium (mg/l)		ND.01	ND.01		ND.01	ND.01	ND.01		ND.01	ND.02	ND.02		ND.01	ND.01
Copper (mg/l)			ND.02		ND.02	ND.04	ND.03		ND.02	ND.02	ND.02		0.02	ND.02
Zinc (mg/l)			ND.03		ND . 04	80.DH	ND.007		ND.03	ND.03	ND.02		ND.02	0.02
Chioride (mg/l)			100		110	120	130		160	129	97		100	160
Witrate as W (mg/l)		4.5	7.5		6.1	4.7	6.3		5.4	6.1	3.8		6.1	6.3
Hitrate as NO ₃ (mg/l)		20	33		27	21	28		24	27	17		27	
Note: ND 1 = Chemica	l was not d	etected at	1 mg/l.											
						0	Irganic Com	pounds (EPA	Nethod 624)					
1,1-Dichloroethane (u	a/l)		13		11	3	19		140	1.2	ND 1		NO 10	
1,1-Dichloroethylene			1		2	ND 1	2		50	ND.5	NO 1		NO 10	
1,2-Dichloroethane(ug			ND 1		ND 1	ND 1	2		1.5	ND.5	NO 1		ND 10	
Benzene (ug/l)			8		ND1	ND 1	ND 1		ND.5	ND.5	ND.7		ND7	
Carbon Tetrachloride	(ug/U)		ND 1		ND 1	ND 1	ND 1		ND.5	ND.5	NO 1		ND 10	
Chloroform (ug/l)	, , , ,		HD1		ND1	ND 1	. 2		17	ND.5	ND 1		ND 10	·
			ND 1		NO 1	NO 1	ND 1		ND.5	ND.5	NO 1		ND 10	
Ethylbenzene (ua/l)			8		7	3	12		82	3.2	NO 1		ND 20	
Ethylbenzene (ug/l) Inichloroethylene (ug/l)	1/1)		ü											
Irichloroethylene (ug	1/1)				ND 1	NO 1	ND 1		1.5	ND.5	ND 1		ND 10	
	1/()		ND 1 ND 1		ND 1 ND 1	ND 1 ND 1	NO 1		1.5 ND.5	ND.5 ND.5	ND 1 ND 1		ND 10 ND 10	

Note: ND 1 = Compound was not detected at 1 ug/l.

TABLE 6
WATER-QUALITY DATA
HONITORING WELL #5
SOUTHERN CALIFORNIA CHEMICAL
PROJECT 50-1014-03

							DAT	SAMPLED						
	2/85-3/85	7/85-8/85	3/86	5/86	7/86	9/86	12/86	3/87	6/87-7/87	10/87	2/88	5/88	6/88	9/88
COMPOUND				***********		EPA Inc	licator Hea	surement (C	FR 40 265.92)				
oll (units)	7.3		7.4		7 .3	7.3	7.82	6.9	7.0	7.6	7.06		7.10	
10C (mg/l)	HD3		4.8	:	5	3	ND3	HD3	ND3	5	7		21	
10X (mg/l)	. 19	•	. 16		.65	. 18	.30	.45	.36	ND.03	.3		0.13	
Sp. Cond. (unhos/cm)	1700		1200		1400	1100	1220	1400	1400	1300	1537		1400	
						S1	te-Specific	Indicator	Chemicals					
Chromium (total) (mg/l	0005. סא		ко.03		ND.03	ND.03	ND.03	ND . 04	ND.04	ND.04	.1	ND.02	0.05	0.05
Chromium (HEX) (mg/l)	ND.05		ND . 02		ND.02	ND.02	ND.02	ND.02	ND.02	ND.02	NO.1		ND.1 '	ND .05
Cachnium (mg/l)	ND.0002		ND.009		ND.01	ND.01	ND.01	ND.01	ND.01	ND.02	ND.02		ND.01	ND.01
Copper (mg/l)	80.DK		ND.02		ND.02	ND .04	ND.04	ND.02	ND.02	ND.02	ND.02		ND.02	ND.02
Zinc (mg/l)	ND.019		0.18		ND.04	ND.08	ND.001	ND.031	ND.03	ND.03	.4		ND.02	ND.02
Chloride (mg/l)	2.0		66		79	290	143.5	110	110	100	90		91	93
Nitrate as N (mg/l)	0.42		8.8		12	8.6	11.13	10	15	3.4	5		14	3.6
Nitrate as HO ₃ (mg/l)	1.9		39		55	38	49.3	45	65	24	22		3.1	
Note: ND 1 = Chemical		etected at	1 mg/l.											
_								ounds (EPA	Nothed 62/1					
							rganic Com	MOINS TELY	nethod ozaj					
1 1-Dichloroethane (un	/()	ND 1	ND 1		2	2	7	4	5.4	.29	но 1		ND 1	
		ND 1 ND 1	ND 1		2					.29 .25	NO 1		HD 1 HD 1	
1,1-Dichloroethane (ug	ug/l)	ND 1				2	7	4	5.4					
1,1-Dichloroethylene (u.s. 1,2-Dichloroethane (u.s.	ug/l)		ND 1		3	2	7 4	4 2.7	5.4 5.2	.25	ND 1		ND 1	
1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l)	ug/l) /l)	ND 1	ND 1 ND 1		3 ND 1	2 3 ND 1	7 4 ND 1	4 2.7 ND.5	5.4 5.2 ND.5	.25 ND.3	ND 1		ND 1	
1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (ug/l) /l)	ND 1 ND 1 5	ND 1 ND 1 ND 1		3 ND 1 ND 1	2 3 ND 1 ND 1	7 4 ND1 ND1	4 2.7 ND.5 ND.5	5.4 5.2 HD.5 ND.5	.25 ND.3 ND.5	ND1 ND1 ND.7		HD 1 7 HD .7	
1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (Chloroform (ug/l)	ug/l) /l)	ND 1 ND 1 5 3	ND 1 ND 1 ND 1 11		3 ND 1 ND 1 45.5	2 3 NO1 NO1 37	7 4 ND1 ND1 68	4 2.7 ND.5 ND.5	5.4 5.2 NO.5 NO.5	.25 ND.3 ND.5	ND 1 ND 1 ND .7 20		ND 1 7 ND . 7 26	
1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (Chloroform (ug/l) Ethylbenzene (ug/l)	ug/l) /l) ug/l)	ND 1 ND 1 5 3 2 ND 1	ND 1 ND 1 ND 1 11 10 ND 1		3 ND 1 ND 1 45.5 14.5	2 3 ND1 ND1 37	7 4 ND1 ND1 68 . 43	4 2.7 ND.5 ND.5 100 48	5.4 5.2 ND.5 ND.5 120	.25 ND.3 ND.5 99	ND1 ND1 ND.7 20		ND 1 7 ND . 7 26 18	
1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (Chloroform (ug/l) Ethylbenzene (ug/l) Trichloroethylene (ug/	ug/l) /l) ug/l)	ND 1 ND 1 5 3 2 ND 1 10	ND 1 ND 1 ND 1 11 10 ND 1 24		3 ND 1 ND 1 45.5 14.5 ND 1	2 3 HD1 HD1 37 16	7 4 ND1 ND1 68 . 43	4 2.7 ND.5 ND.5 100 48 ND.5	5.4 5.2 NO.5 NO.5 120 50 NO.5	.25 ND.3 ND.5 99 95 ND.5	ND1 ND1 ND.7 20 10 ND1		ND 1 7 ND . 7 26 18 ND 1	
1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (Chloroform (ug/l) Ethylbenzene (ug/l)	ug/l) /l) ug/l)	ND 1 ND 1 5 3 2 ND 1	ND 1 ND 1 ND 1 11 10 ND 1		3 ND 1 ND 1 45.5 14.5 ND 1	2 3 HD 1 HD 1 37 16 6 36	7 4 ND1 ND1 68 43 ND1 70	4 2.7 ND.5 ND.5 100 48 ND.5 70	5.4 5.2 NO.5 NO.5 120 50 NO.5	.25 ND.3 ND.5 99 95 ND.5 26	ND 1 ND 1 ND .7 20 10 ND 1 5		ND 1 7 ND . 7 26 15 ND 1 18	

Hote: HD 1 = Compound was not detected at 1 ug/l.

TABLE 7
WATER-QUALITY DATA
MONITORING WELL #6B
SOUTHERN CALIFORNIA CHEMICAL
PROJECT 50-1014-03

					DAT	E SAMPLED						
	2/85-3/85 7/85-8/85	3/86 5/86	7/86	9/86	12/86	3/87	6/87-7/87		* 2/88	5/88	6/88	9/88
	2(21,2(22,1722,2122	_ = 1. = 1. = 1. = 1. = 1.	······································						5,55			
OHPOUND				EPA 1rx	licator Mea	surement (CFR 40 265.92)				
oH (units)	7.6	7.4	7.5	7.8	7.6	7.1	7.4	7.1	7.13		7.10	
TOC (mg/l)	ND3	6.5	. СОИ	. СОИ	ND3	ND3	ND3	9	ND 1		1 סא	
TOX (mg/l)	0.1	но.08	ND.08	ND.08	ND.08	ND.08	ND.08	ND.03	.02		ND . 01	
Sp. Cond. (unhos/cm)	1400	1300	1400	1200	1425	1400	1600	1400	1265		1300	
				<u>si</u>	te-Specific	Indicator	Chemicals					
Thromium (total) (mg/l) 0.0038	ND.03	ND .03	ND.02	ND.03	ND.04	ND.04	ND.04	.02	ND.02	ND .02	0.05
Chromium (NEX) (mg/l)	ND .05	ND.02	ND.02	ND.02	ND.02	ND.02	ND.02	ND.02	ND . 1		NO.09	ND . 05
Cadmium (mg/l)	ND.0002	ND . 009	ND.01	ND.01	ND.01	ND.01	ND.01	ND.02	ND.02		ND.01	ND.01
Copper (mg/l)	ND.08	ND.02	ND.02	ND.04	ND.03	ND.02	ND.02	ND.02	ND.02		ND.02	ND.02
linc (mg/l)	ио.03	ND.03	ND.04	ND.08	ND.007	ND.03	ND.03	ND.03	ND.02		.02	ND.02
Chloride (mg/l)	79	220	82	100	140	92	130	94	61		89	100
litrate as N (mg/l)	6.9	8.8	7.0	5.2	6.1	7	8.4	8.4	8.4		7.3	8.0
Hitrate as NO ₃ (mg/l)	28	39	31	23	27	31	37	37	37		32	
Hote: ND 1 = Chemical	was not detected at	1 mg/l.										
				<u> </u>	organic Com	pounds (EP/	Hethod 624)					
1,1-Dichloroethane (ug	./1)	พ บ 1	ND 1	NO 1	ND 1	ND.5	ND.5	ND.5	NO 1		ND 1	
			ND 1	ND 1	ND 1	ND . 5	ND.5	NO.5	ND 1		NO 1	
•	'ua/1)	ומא	ועה								ND 1	
1,1-Dichloroethylene		ND 1 ND 1			ND1	ND.5	ND.5	ND.5	ND1		110	
1,1-Dichloroethylene (1,2-Dichloroethane (19		ND 1	ИО 1	ND1 ND1	•	ND.5	ND.5 ND.5	ND.5 ND.5	ND 1 ND . 7		ND.7	
1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l)	ŋ/ t)	НО 1 НО 1		ND1	ND 1							
1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (ŋ/ t)	ND 1 ND 1 ND 1	ND 1 ND 1	ND 1 ND 1	ND 1	.5 סא	ND.5	ND.5	NO.7		ND.7	
1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (Chloroform (ug/l)	ŋ/ t)	NO 1 NO 1 NO 1 NO 1	НО 1 НО 1 НО 1 НО 1	ND1 ND1 ND1 ND1	ND 1 ND 1 ND 1	но.5 но.5	ND.5	ND.5 ND.5	ND.7		ND.7	
1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (Chloroform (ug/l) Ethylbenzene (ug/l))/ () (ug/ ()	NO 1 NO 1 NO 1 NO 1 NO 1	ND 1 ND 1 ND 1 ND 1 ND 1	ND1 ND1 ND1	ND 1 ND 1 ND 1 ND 1	ND.5 ND.5 ND.5 ND.5	HO.5 HD.5 HD.5	ND.5 ND.5 ND.5	ND .7 ND 1 ND 1		но.7 но1 но1	
1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (Chloroform (ug/l) Ethylbenzene (ug/l) Trichloroéthylene (ug/)/ () (ug/ ()	NO 1 NO 1 NO 1 NO 1 NO 1	ND 1 ND 1 ND 1 ND 1 ND 1 19	ND1 ND1 ND1 ND1 ND1	ND 1 ND 1 ND 1 ND 1 ND 1	ND.5 ND.5 ND.5	ND.5 ND.5 ND.5 1.5	ND.5 ND.5 ND.5 ND.5	ND.7 ND1 ND1 ND1		ND.7 ND1 ND1	
1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (Chloroform (ug/l) Ethylbenzene (ug/l))/ () (ug/ ()	NO 1 NO 1 NO 1 NO 1 NO 1	ND 1 ND 1 ND 1 ND 1 ND 1	ND1 ND1 ND1 ND1 ND1 23.5	ND 1 ND 1 ND 1 ND 1 ND 1 ND 1	ND.5 ND.5 ND.5 ND.5	ND.5 ND.5 ND.5 1.5	NO.5 NO.5 NO.5 NO.5	ND.7 ND1 ND1 ND1 22		ND.7 ND1 ND1 ND1 21	

Note: NO 1 = Compound was not detected at 1 ug/l.

TABLE 8
WATER-QUALITY DATA
HONITORING WELL #7
SOUTHERN CALIFORNIA CHEMICAL
PROJECT 50-1014-03

_							DAT	E SAMPLED						
	2/05-7/05	7/85-8/85	7.04	5/86	7/86	9/86	12/86	3/87	6/87-7/87	3. 7. 10787	2/88	5/88	6/88	9/88
•	2/02-3/03	1703-0703	3/00	2/00	1700	7/00	12/00	7(01	0/01-1/01	10/0/	_ 2700	3700	0/00	7700
COMPOUND						EPA In	dicator He	asurement (CFR 40 265.9	2)				····
pH (units)		6.3	7.3		7.4	7.2	7.3	6.5	6.8	7.3	8.94		6.95	
10C (mg/l)		260	6.5	•	5	17	ND3	43	. 7	\$	2		4.9	
10X (mg/l)		0.081	ND.08		ND.08	ND.08	ND.08	ND.08	.11	ND.03	.08		0.18	
Sp. Cond. (unhos/cm)		2700	1700		1900	5600	5850	3700	3300	5000	8500		2800	
						şi	te-Specifi	c Indicator	Chemicals					
- Chromium (total) (mg/l)		ND.03	ND.03		ND.03	ND.03	ND.03	ND.04	ND.04	ND . 04	.02	ND.02	0.07	0.04
Chromium (HEX) (mg/l)		ND . 5	ND.02		ND.02	ND.02	ND.02	ND.02	ND.02	ND.02	ND.1		ND.1 '	ND.05
Cadmium (mg/l)		1.D. 01	ND.009		ND.01	ND.01	ND.01	ND.01	NO.01	ND.02	ND.02		ND.01	NO.01
Copper (mg/l)			ND.02		ND.02	ND.04	ND.03	ND.02	0.08	ND . 02	ND.02		ND.02	ND.02
Zinc (mg/l)			ND.03		ND.04	ND.04	0.022	ND.03	0.04	ND.03	ND.02		ND.02	ND.02
Chloride (mg/l)		380	190		280	1800	1700	630	610	1200	1900		570	1400
Hitrate as N (mg/l)		27	5.0		4.3	2.7	4.4	19	25	1.1	ND0.2		NO.2	5.5
Mitrate as NO ₃ (mg/l)		120	22		19	12	19.5	82	110	19	ND 1		ND 1	
Hote: ho 1 = Chemical	was not de	etected at	1 mg/l.											
						(rganic Con	pounds (EP/	Nethod 624)				
1.1-Dichloroethane (ug/	/13	2			8	42	30	7.1	14	6	ND 1		ND 1	
1,1-Dichloroethylene (ND 1			2	5	6	ND5	6	.55	ND 1		NO 1	
1,2.Dichloroethane (ug/		ND 1			ND 1	2	ND 1	ND5	ND . 5	ND.5	ND 1		ND 1	
Benzene (ug/l)		64			ND 1	но 1	NO 1	ND5	ND.5	ND.5	ND . 7		ND.7	
Carbon Tetrachloride (ug/1)	ND 1			ND 1	ND 1	NO 1	ND5	ND.5	ND.5	HD 1		ND 1	
Chloroform (ug/l)	J ,	NO 1			но 1	NO 1	NO 1	8.2	ND.5	ND.5	ND 1		ND 1	
Ethylbenzene (ug/l)		NO 1			4	ND 1	NO 1	1.0	ND.5	ND.5	ND 1	•	. ND 1	
Irichloroethylene (ug/	l)	29			67	71	70	180	130	35	24		100	
Toluene (ug/l)		2			5	ND 1	ND 1	2.2	3.6	ND.5	NO 1		NO 1	
Xylene (ug/l)		HD 1			4	NO 1		NO5	ND.5	ND.5	ND 1		NO 1	
Hethylene Chloride (ug.	/ ()	ND1			ND 1	но 1	NO 1	ND5	ND.5	1.1	ND 1		NO 1	

Note: ND 1 = Compound was not detected at 1 ug/t.

TABLE 9
WATER-QUALITY DATA
HONITORING WELL #8
SOUTHERN CALIFORNIA CHEMICAL
PROJECT 50-1014-03

							DAT	E SAMPLED						 	
2	<u>/05-3/85</u>	7/85-8/85	3/86	5/86	7/86	9/86	12/86	3/87	6/87-7/87	10/87	2/88	5/88	6/88	9/88	
COMPOUND						EPA In	dicator Me	surement (CFR 40 265.92	1					
pH (units)		6.6	7.5		7.4	7.4	7.4	6.9	7.1	7.1	7.23		7.25		
10C (mg/l)		99	7	:	8	ND3	ND3	ND3	5	ND3	ND 1		1.5		
10X (mg/l)		0.44	.09		80.0M	.10	.15	ND.08	.19	ND.08	.04		.06		
Sp. Cond. (whos/cm)		2800	1500		1700	1600	1800	2000	2100	1300	1550		1,600		
						s I	te-Specifi	· Indicator	Chemicals						
			**		=										
Chromium (total) (mg/l)		ND.05	ND.03		HD.03	ND.03	ND.03	ND.04	ND.04	ND.04	.03	ND.02	ND.02	0.05	
Chromium (HEX) (mg/l)		ND.05	ND.02		ND.02	ND.02	ND.02	ND . 02	ND.02	ND.02	ND.L		ND . 05	ND.05	
Cadinium (mg/l)		ND.01	ND.009		ND.01	ND.01	ND.01	ND.01	ND.01	ND.02	ND.02		ND.01	ND.01	
Copper (mg/l)			KD.02		ND.02	ND.04	KD.03	ND.02	ND.02	ND.02	ND.02		ND.02	ND.02	
linc (mg/l)			Ю.О3		ND.04	ND.08	ND.001	ND.03	ND.03	ND.03	ND.02		0.05	0.04	
Chloride (mg/l)			530		170	270	250	300	300	120	140		190	130	
Nitrate as N (mg/l)		1.3	4.2		3.2	2.7	3.2	2.5	2.2	4.3	4.5		3.7	5.7	
Nitrate as NO ₃ (mg/l)		5.8	39		14	12	14.1	11	10	19	20		16		
Note: ND 1 = Chemical	was not d	etected at	1 mg/l.												
							Organic Com	pounds (EP/	4 Hethod 624)						
	1.5	•	41		, ° 76	160	160	55	160	45	50		42	2	
1,1-Dichloroethane (ug/			3		8	17	19	5.6	29	5.5	2.8		6	NO 1	
1,1-Dichloroethylene (u					14	14	8	9.5	16	ND.5	ND1		3	30	
1,2-Dichloroethane (ug/	()		1		•	ND1	ND1	ND.5	ND.5	ND.5	ND.7		ND.7	ND.7	
Benzene (ug/l)	- 413		ND 1		но1 но1	ND1	. NO I	ND.5	Ю.5	иD.5	ND1		ND 1	ND1	
Carbon Tetrachloride (u	ig/ ()		ND1			NU 1 2	2	5.6	NO.5	0.55	ND1		NO1	NO 1	
Chloroform (ug/l)			ND 1		2	_	-		ю.5 ND.5	U.33 ND.5	ND 1		. ND1	ND1	
Ethylbenzene (ug/l)	_	•	ND1		2	ND 1	ND 1	NO.5			17		27	20	
Trichloroethylene (ug/l)		19		28	52	44	67	51	25					
Toluene (ug/l)			ND 1		3	ND 1	NO 1	2.3	ND.5	ND.5	ND 1		ND 1	ND 1	
Xylene (ug/l)			ND 1		1	NO1	_	ND.5	ND.5	ND.5	ND1		ND 1	ND 1	
Hethylene Chloride (ug/	'U)		5		ND 1	НО 1	ND 1	ND.5	2.4	3.0	ND 1		ND 1	NO 1	NO 1

Hote: ND 1 = Compound was not detected at 1 ug/t.

TABLE 10 WATER-QUALITY DATA MONITORING WELL #9 SOUTHERN CALIFORNIA CHEMICAL 'PROJECT 50-1014-03

							E SAMPLED						
	2/85-3/85 7/85-8/8	3/86	5/86	7/86	9/86	12/86	3/87	6/87-7/87	10/87	2/88	5/88	6/88	9/88
COMPOUND					EPA Inc	licator Hea	surement (FR 40 265.92)				
pH (units)	6.4	7.4		7.3	7.0	7.4	6.9	6.8	6.9	7.15		7.0	
IOC (mg/l)	210	14	•	28	2.8	24	ND3	42	15	3		4.0	
IOX (mg/l)	0.13	.26		.12	.28	.37	.37	.48	.28	. 16		0.22	
Sp. Cond. (unhos/cm)	2200	2800		2000	2400	2675	2500	3200	3100	2075		1950	
					Si	te-Specific	Indicator	Chemicals					
Chromium (total) (mg/l)) ND .03	ND.03		ND.03	ND.03	ир.03	ND . 04	0.12	.94	1.30	2.42	1.66	2.75
Chromium (HEX) (mg/l)	ุทอ.05	ND.02		ND.02	0.05	ND.02	ND.02	0.05	.59	1.30		0.8	1.5
Cadmium (mg/l)	ND.01	ND . 00		ND.01	ND 1	NQ.01	ND.01	ир.01	ND.02	ND.02		ND.01	ND.01
Copper (mg/l)		HD.02		ND.02	ND.04	ко. ОХ	ND.02	ND.02	ND.02	ND.02		ND.02	ND.02
Zinc (mg/l)		ND.03		ND.04	ND.08	0.018	ND.03	иD.03	ND.03	ND . 02		0.05	0.03
Chloride (mg/l)	300	530		250	720	670	470	640	630	290		290	490
Hitrate as N (mg/l)	1.4	8.8		3.2	1.4	3.72	4.1	2.9	8.4	7.2		5.0	7.6
Mitrate as NO ₃ (mg/l)		39		14	6.2	16.5	18	13	37	32		22	
•	r	1 mg/l,											
Note: ND 1 = Chemical													
Note: NO 1 = Chemical					0	rganić Com	pounds (EPA	Hethod 624)					
Note: NO 1 = Chemical					0	rganic Com	pounds (EPA	Hethod 624)					
	/1)	99		50	360	rganić Com	pounds (EPA	Hethod 624)	130	40		ND 10	90
1,1-Dichloroethane (ug		99 18								40 50		ND 10 29	90
1,1-Dichloroethane (ug 1,1-Dichloroethylene (ug/l)			50	360	250	110	140	130				
1,1-Dichloroethane (ug 1,1-Dichloroethylene (1,2-Dichloroethane (ug	ug/l)	18		50 18	360 200	250 110	110 44	140 72	130 84	50		29	30
1,1-Dichloroethane (ug 1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l)	ug/l) /l)	18 10		50 18 13	360 200 90	250 110 52	110 44 90	140 72 69	130 84 ND.5	50 6		29 90	30 ND10
1,1-Dichloroethane (ug 1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (ug/l) /l)	18 10 ND 1		50 18 13 ND 1	360 200 90 NO5	250 110 52 ND1	110 44 90 HD.5	140 72 69 ND2.5	130 84 ND.5 ND.5	50 6 ND.7		29 90 ND 7	30 . ND 10 ND 7
1,1-Dichloroethane (ug 1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (Chloroform (ug/l)	ug/l) /l)	18 10 ND 1 ND 1 20		50 18 13 ND1 ND1	360 200 90 NO5 ND5	250 110 52 ND1 ND1	110 44 90 HD.5 ND.5	140 72 69 ND2.5 ND2.5	130 84 NO.5 NO.5	50 6 HD.7 HD1		29 90 ND 7 ND 10	30 . ND 10 ND 7 ND 10
1,1 Dichloroethylene (1,2 Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (Chloroform (ug/l) Ethylbenzene (ug/l)	ug/l) //l) ug/l)	18 10 ND 1 ND 1 20 ND 1		50 18 13 ND1 ND1	360 200 90 NO5 ND5 30	250 110 52 ND1 ND1 22	110 44 90 ND.5 ND.5	140 72 69 ND2.5 ND2.5	130 84 ND.5 ND.5 ND.5	50 6 ND.7 ND1 13		29 90 ND 7 ND 10 ND 10	30 ND 10 ND 7 ND 10 10
1,1-Dichloroethane (ug 1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (Chloroform (ug/l) Ethylbenzene (ug/l) Trichloroethylene (ug/	ug/l) //l) ug/l)	18 10 ND 1 ND 1 20 ND 1 61		50 18 13 ND1 ND1 4 ND1 3	360 200 90 NO5 ND5 30 ND5	250 110 52 ND1 ND1 22	110 44 90 HD.5 ND.5 10 HD.5	140 72 69 ND2.5 ND2.5 19	130 84 ND.5 ND.5 ND.5 28	50 6 ND.7 ND1 13 ND1		29 90 HD7 HD10 HD10	30 ND 10 ND 7 ND 10 10 ND 10
1,1-Dichloroethane (ug 1,1-Dichloroethylene (1,2-Dichloroethane (ug Benzene (ug/l) Carbon Tetrachloride (Chloroform (ug/l) Ethylbenzene (ug/l)	ug/l) //l) ug/l)	18 10 ND 1 ND 1 20 ND 1		50 18 13 ND 1 ND 1 4 ND 1	360 200 90 ND5 ND5 30	250 110 52 ND1 ND1 22 ND1 240	110 44 90 HD.5 HD.5 10	140 72 69 ND2.5 ND2.5 19 ND2.5 160	130 84 ND.5 ND.5 ND.5 28 ND.5	50 6 ND.7 ND1 13 ND1		29 90 ND 7 ND 10 ND 10 ND 10 120	30 . ND 10 ND 7 ND 10 10 ND 10 90

Note: ND 1 = Compound was not detected at 1 ug/l.

TABLE 11
WATER-QUALITY DATA
HONITORING WELL #10
SOUTHERN CALIFORNIA CHEMICAL
PROJECT 50-1014-03

DATE SAMPLED 7/86 9/86 12/86 3/87 6/87-7/87 10/87 2/88 5/88 6/88 9/88 2/85-3/85 7/85-8/85 3/86 5/86 EPA Indicator Heasurement (CFR 40 265.92) COMPOUND 7.20 7.4 7.8 7.4 7.2 7.1 7.51 pH (units) 6.8 7.8 7.6 7 29 440 10 130 103 135 33.8 158 56 10C (mg/l) 80.DM . 14 . 15 .20 .62 .18 .06 0.22 0.17 80.DK (1/gm) XOE 1800 1600 1400 1550 1600 2100 1900 1355 2100 1300 Sp. Cond. (unhos/cm) Site-Specific Indicator Chemicals Chromium (total) (mg/l) ND.03 ND.03 ND.03 ND.04 ND.04 ND.04 .08 .05 0.05 0.06 ND . 03 ND.03 ND.1 ND.05 ND.05 NO.02 ND.02 ND.02 ND.02 ND.5 ND.02 ND.02 Chiromium (HEX) (mg/l) ND.01 ND.01 ND.02 ND.01 ND.01 ND.01 ND.01 ND.01 ND.02 ND.01 Codmium (mg/l) 0.05 ND.02 ND.02 ND.02 ND.02 ND.02 ND.02 ND.04 KD.03 Copper (mg/l) XD.02 **SO. DK** 0.35 ND.02 ND.03 ND.03 KO.03 ND.03 ND.04 80.DH ND.007 Zinc (mg/l) 230 210 120 150 160 160 260 230 100 150 Chloride (mg/l) ND.2 ND.2 0.1 ND.1 NO.1 ND.1 ND.1 ND.2 NO.01 ND.1 ND.1 Nitrate as N (mg/l) ND.4 ND.4 ND.4 ND 1 ND1 0.6 ND.04 ND.4 ND4.4 HD4.4 Hitrate as NO, (mg/l) Hote: NO 1 = Chemical was not detected at 1 mg/l. Organic Compounds (EPA Hethod 624) ٠ أ 32 **XO5** 20 ND5 23 21 3.7 ND 10 2 **HD50** 1.1-Dichloroethane (ug/l) 41 28 ND 1 21 ND5 ND20 ND5 7 14 1,1-Dichloroethylene (ug/l) ND5D 1 15 70 40 93 270 63 160 86 200 1.2-Dichloroethane (ug/l) **HD50** 17 ND7 ND3 ND2.5 NO.5 ND.7 ND5 ND50 ND1 ND 1 ND 10 ND20 Benzene (ug/l) ND 10 ND5 ND2.5 ND.5 ND 1 RD1 HD 10 ND 20 ND5 ND50 NO 1 Carbon Tetrachloride (ug/l) ND20 ND5 3.1 2.3 ND 1 **HD10** ND5 ND 10 50 ND 1 ND 1 Chloroform (ug/1) 2000 360 ND 10 ND5 330 ND 1 2200 1800 ND 1 Ethylbenzene (ug/l) 6500 86 90 60 14 93 120 62 160 130 56 250 29 Irichtoroethylene (ug/l) ND 10 ND5 ND.5 HD1 560 ND5 14 17000 ND 1 36 lotuene (úg/l) ND 1 ND.5 ND 10 ND5 HD1 70 90 600 120 500 20000 HD 1 Xylene (ug/l) ND10 14 ND20 ND 5 13 1.8 ND 1 ND 1 ND 10 100 ND 1 Hethylene Chloride (ug/l)

Note: NO 1 = Compound was not detected at 1 ug/l.

TABLE 12
WATER-QUALITY DATA
MONITORING WELL #11
SOUTHERN CALIFORNIA CHEMICAL
PROJECT 50-1014-03

							DATE	SAMPLED						
										=				
	2/85-3/85	7/85-8/85	3/86	5/86	7/86	9/86	12/86	3/87	6/87-7/87	10/87	2/88	5/88	6/88	9/88
ССИРОЛИО						EPA 1nd	licator Hea	surement (CFR 40 265.9	2)				
v														
pH (units)		6.6	7.8		7.2	7.3	7.5	7.5	7.4	7.4	7.34		7.45	
10C (mg/l)		54	13		120	156	125	26.8	58	61	12		20	
10X (ing/l)		ND.05	0.1		80.DH	80.0K	.12	.14	.15	ND.08	.07		0.078	
Sp. Cond. (unhos/cm)		1600	1600		1700	1600	1800	1700	2100	1600	1895		1500	
!									01					
						SII	te-Specific	Indicator	Chemicals					
Chromium (total) (mg/l))	ΣО. ОИ	ир.03		ND.03	ко.03	но.03	ND.04	ND . 04	ND.04	.04	ND.02	ND.02	0.05
Chromium (HEX) (mg/l)		ND.5			ND.02	ND.02	ND.02	ND.02	ND.02	ND.02	ND.1		ND . 05"	ND.05
Cadmium (mg/l)		ND.01	ND.01		ND.01	ND.01	ND01	ND.01	ND . 01	ND.02	ND.02		ND.01	ND.01
Copper (mg/l)			ND.02		ND.02	ND.04	ND.03	ND.02	ND.02	ND.02	ND.02		ND.01	ND.02
Zinc (mg/l)			ND.03		ND.04	80.DM	ND.001	ND.03	ND.03	ND.03	ND.02		ND.02	0.02
Chlorida (mg/l)		220	230		180	230	240	170	270	110	86		120	110
Hitrate as N (mg/l)		1.2	2.5		1.1	HO 1	0.1	1.2	0.7	1.5	2.2		1.5	1.7
Hitrate as NO _x (mg/l)		5.2	11		4.8	ND.4	0.5	5.5	3.3	6.8	9.6		65	
Note: NO 1 = Chemical	was not d	letected at	1 mg/l.											
									Nashad (2/)					
Annual state of the latter of the state of t							rganic Lon	pounds (EP)	A Hethod 624)					
1,1-Dichloroethane (ug	/ ()		10	4	10	ND 200	ND 100	6.9	12	2.3	2.5		NO 10	ND 5
1,1 Dichloroethylene (8	2	5	ND 200	ND 100	5.0	11	2.6	2.3		ND 10	ND5
1,2-Dichloroethane (ug			8	31	17	ND200	130	95	21	89	21		ND 10	60
Benzene (ug/l)			но 1	3	но 1	ND200	ND 100	1.5	ND.5	ND . 5	ND . 7		ND 7	KO3
Carbon Tetrachtoride (ug/l)		ND 1	NO 1	1 DK	ND200	NO 100	ND.5	ND.5	ND.5	NO 1		NO 10	ND5
(hloroform (ug/l)		٠	3	3	10	ND200	. ND100	3.3	3.5	1.0	NO 1		NO 10	ND5
Ethylbenzene (ug/l)			13	1800	2200	6400	3300	ND.5	1200	180	17		ND 10	130
Ethytoenzene (ug/t/			110	36	76	ND 200	180	46	81	36	20		70	30
	(1)		110						-					
Trichloroethylene (ug/	'l)		1 DK	5400	5200	14000	7500	3.6	360	ND.5	ND 1		ND 10	NO S
	(1)			5400 4000	5200 1500	14000 10000	7500 3000	3.6	360 370	ND.5 ND.5	ND 1 ND 1		ND 10 110	NOS NOS

Note: ND 1 = Compound was not detected at 1 ug/1.

APPENDIX C

ATI ANALYTICAL REPORTS

ATI I.D. 004134

April 30, 1990

Camp Dresser & McKee Inc. 18881 Vonkarmon, Suite 650 Irvine, California 92715

Project Name: Southern California Chemical

Project No.: 2279-111-GW-SAMP

Attention: Bill Grove

On April 10, 1990, Analytical Technologies, Inc. received <u>five</u> <u>water</u> samples for analyses. The samples were analyzed with <u>EPA</u> methodology or equivalent methods as specified in the attached analytical schedule. The symbol for "less than" indicates a value below the reportable detection limit. Please see the attached sheet for the sample cross reference.

The results of these analyses and the quality control data are enclosed.

Timothy J/Fitzpatrick Inorganics Supervisor

TJF:bc

cc: E.E. Vigil

Southern California Chemical

8851 Dice Road

Santa Fe Springs, CA 90670

Richard M. Amano Laboratory Manager

ATI I.D. 004134

ANALYTICAL SCHEDULE

CLIENT: CAMP DRESSER & MCKEE INC.

PROJECT NO.: 2279-111-GW-SAMP

CLIENT: CAMP DRESSER & MCKEE INC. PROJECT NAME: SOUTHERN CALIFORNIA CHEMICAL

-	ANALYSIS	TECHNIQUE	REFERENCE/METHOD
. The second sec	CHLORIDE CHROMIUM HEXAVALENT NITRATE AS NITROGEN	COLORIMETRIC COLORIMETRIC COLORIMETRIC	EPA 325.2 EPA 7196 EPA 353.1
	CADMIUM CHROMIUM COPPER ZINC	ICAP ICAP ICAP ICAP	EPA 6010 EPA 6010 EPA 6010
1 200	HALOGENATED VOLATILE ORGANICS	GC/ELCD	EPA 8010
	AROMATIC VOLATILE ORGANICS	GC/PID	EPA 8020

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/10/90

PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CAL CHEMICAL REPORT DATE : 04/30/90

ATI I.D.: 004134

-	ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
***	01 02 03 04 05	SCC-MW01-007 SCC-MW02-007 SCC-MW11-007 SCC-EB01-007 TRIP BLANK	WATER WATER WATER WATER WATER WATER	04/10/90 04/10/90 04/10/90 04/10/90 04/10/90

---- TOTALS ----

MATRIX # SAMPLES
----WATER 5

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

GENERAL CHEMISTRY RESULTS

ATI I.D.: 004134

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/10/90

PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CAL CHEMICAL REPORT DATE : 04/30/90

					
PARAMETER	UNITS	01	02	03	04
CHLORIDE CHROMIUM HEXAVALENT NITRATE AS NITROGEN	MG/L	475 <0.02 1.2	<0.02	115 <0.02 2.1	<2.0 <0.02 <0.05

NOTE: Chromium hexavalent was analyzed on 04/10/90. Chloride and nitrate as nitrogen were analyzed on 04/11/90.

GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CAL CHEMICAL ATI I.D.: 004134

	PARAMETER	UNITS	ATI I.D.		DUP. RESULT RE	D D	SPIKED SAMPLE		% REC
تبغد	CHLORIDE CHROMIUM HEXAVALENT NITRATE AS NITROGEN	MG/L MG/L MG/L	00413404 00413404 00413605	<0.02	<0.02	-	40 0.24 1.9	40 0.25 2.0	100 96 95

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) Average Result

METALS RESULTS

ATI I.D.: 004134

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/10/90

PROJECT # : 2279-111-GW-SAMP
PROJECT NAME : SO CAL CHEMICAL

PROJECT NAME : SO CAL CHEMICAL REPORT DATE : 04/30/90 .

	TROOPOL MINE . CO OND ONDING	-		•		
-	PARAMETER	UNITS	01	02	03	04
-	CADMIUM CHROMIUM COPPER ZINC	MG/L MG/L MG/L MG/L	0.02	0.02	<0.005 <0.01 <0.02 <0.01	<0.005 <0.01 <0.02 0.02

NOTE: The samples were analyzed for metals on 04/23/90.

METALS - QUALITY CONTROL

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE

PROJECT # : 2279-111-GW-SAMP
PROJECT NAME : SO CAL CHEMICAL

ATI I.D.: 004134

-	PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT	RPD	SPIKED SAMPLE		% REC
نت	CADMIUM CHROMIUM COPPER ZINC	MG/L MG/L	00413402 00413402 00413402 00414901	0.02 <0.02	<0.005 0.01 <0.02 <0.01	67 0	1.9 1.9 1.9	2.0 2.0 2.0 1.0	95 94 95 100

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result)

Average Result

ATI I.D.: 00413401

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/10/90
PROJECT # : 2279-111-GW-SAMP DATE RECEIVED : 04/10/90
PROJECT NAME : SO CAL CHEMICAL DATE EXTRACTED : N/A
CLIENT I.D. : SCC-MW01-007 DATE ANALYZED : 04/19/90

SAMPLE MATRIX : WATER UNITS : UG/L
DILUTION FACTOR : 5

	DILUTION FACTOR : 5
COMPOUNDS	RESULTS
BENZENE	<2.5
BROMODICHLOROMETHANE	<1.0
BROMOFORM	<5.0
BROMOMETHANE	<1.0
CARBON TETRACHLORIDE	<1.0
CHLOROBENZENE	<2.5
CHLOROETHANE	<1.0
CHLOROFORM	<1.0
CHLOROMETHANE	<1.0
DIBROMOCHLOROMETHANE	<1.0
1,2-DICHLOROBENZENE	<2.5
1,3-DICHLOROBENZENE	<2.5
1,4-DICHLOROBENZENE	<2.5
DICHLORODIFLUOROMETHANE	<1.0
1,1-DICHLOROETHANE	<1.0
1,2-DICHLOROETHANE	<1.0
1,1-DICHLOROETHENE	<1.0
1,2-DICHLOROETHENE (TOTAL)	<1.0
1,2-DICHLOROPROPANE	<1.0
CIS-1,3-DICHLOROPROPENE	<1.0
TRANS-1,3-DICHLOROPROPENE	<1.0
ETHYLBENZENE	<2.5
METHYLENE CHLORIDE	<10
1,1,2,2-TETRACHLOROETHANE	<1.0
TETRACHLOROETHENE	3.8
TOLUENE	<2.5
1,1,1-TRICHLOROETHANE	<1.0
1,1,2-TRICHLOROETHANE	<1.0
TRICHLOROETHENE	20
TRICHLOROFLUOROMETHANE	<10
VINYL CHLORIDE	<1.0
XYLENES (TOTAL)	<5.0
, ,	
SURROGATE PERCENT RECOVERIES	
BROMOCHLOROMETHANE (%)	94
TRIFLUOROTOLUENE (%)	106
	

ATI I.D.: 00413402

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

DATE SAMPLED : 04/10/90 DATE RECEIVED : 04/10/90 : CAMP DRESSER & MCKEE INC.-IRVINE CLIENT PROJECT # : 2279-111-GW-SAMP PROJECT NAME : SO CAL CHEMICAL DATE EXTRACTED : N/A CLIENT I.D. : SCC-MW02-007 DATE ANALYZED : 04/19/90

■ SAMPLE MATRIX : WATER UNITS : UG/L

COMPOUNDS	RESULTS	
BENZENE	<0.50	
BROMODICHLOROMETHANE	<0.20	
BROMOFORM	<1.0	
BROMOMETHANE	<0.20	
CARBON TETRACHLORIDE	<0.20	
CHLOROBENZENE	<0.50	
CHLOROETHANE	<0.20	
CHLOROFORM	<0.20	
CHLOROMETHANE	<0.20	
DIBROMOCHLOROMETHANE	<0.20	
1,2-DICHLOROBENZENE	<0.50	
1,3-DICHLOROBENZENE	<0.50	
1,4-DICHLOROBENZENE	<0.50	
DICHLORODIFLUOROMETHANE	<0.20	
1,1-DICHLOROETHANE	<0.20	
1,2-DICHLOROETHANE	<0.20	
1,1-DICHLOROETHENE	<0.20	
1,2-DICHLOROETHENE (TOTAL)	<0.20	
1,2-DICHLOROPROPANE	<0.20	
CIS-1,3-DICHLOROPROPENE	<0.20	
TRANS-1,3-DICHLOROPROPENE	<0.20	
ETHYLBENZENE	<0.50	
METHYLENE CHLORIDE	<2.0	
1,1,2,2-TETRACHLOROETHANE	<0.20	
TETRACHLOROETHENE	<0.20	
TOLUENE	<0.50	
1,1,1-TRICHLOROETHANE	<0.20	
1,1,2-TRICHLOROETHANE	<0.20	
TRICHLOROETHENE	36	
TRICHLOROFLUOROMETHANE	<2.0	
VINYL CHLORIDE	<0.20	
XYLENES (TOTAL)	<1.0	
SURROGATE PERCENT RECOVERIES	3	
BROMOCHLOROMETHANE (%)	94	
TOTELLIODOTOLLIENE (%)	106	

BROMOCHLOROMETHANE (%)	94
TRIFLUOROTOLUENE (%)	106

ATI I.D.: 00413403

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/10/90
PROJECT # : 2279-111-GW-SAMP DATE RECEIVED : 04/10/90
PROJECT NAME : SO CAL CHEMICAL DATE EXTRACTED : N/A
CLIENT I.D. : SCC-MW11-007 DATE ANALYZED : 04/20/90
SAMPLE MATRIX : WATER UNITS : UG/L

	DILUTION FACTOR: 5
COMPOUNDS	RESULTS
BENZENE	<2.5
BROMODICHLOROMETHANE	<1.0
BROMOFORM	<5.0
BROMOMETHANE	<1.0
CARBON TETRACHLORIDE	<1.0
CHLOROBENZENE	<2.5
CHLOROETHANE	<1.0
CHLOROFORM	<1.0
CHLOROMETHANE	<1.0
DIBROMOCHLOROMETHANE	<1.0
1,2-DICHLOROBENZENE	<2.5
1,3-DICHLOROBENZENE	<2.5
1,4-DICHLOROBENZENE	<2.5
DICHLORODIFLUOROMETHANE	<1.0
1,1-DICHLOROETHANE	<1.0
1,2-DICHLOROETHANE	23
1,1-DICHLOROETHENE	<1.0
1,2-DICHLOROETHENE (TOTAL)	<1.0
1,2-DICHLOROPROPANE	<1.0
CIS-1,3-DICHLOROPROPENE	<1.0
TRANS-1,3-DICHLOROPROPENE	<1.0
ETHYLBENZENE	370
METHYLENE CHLORIDE	<10
1,1,2,2-TETRACHLOROETHANE	<1.0
TETRACHLOROETHENE	<1.0
TOLUENE	2.6
1,1,1-TRICHLOROETHANE	<1.0
1,1,2-TRICHLOROETHANE	<1.0
TRICHLOROETHENE	33
TRICHLOROFLUOROMETHANE	<10
VINYL CHLORIDE	<1.0
XYLENES (TOTAL)	150
SURROGATE PERCENT RECOVERIES	
BROMOCHLOROMETHANE (%)	105
TRIFLUOROTOLUENE (%)	111
TKIT HOOKOTOHOBNE (%)	,***

ATI I.D. : 00413404

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

: CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/10/90 DATE RECEIVED : 04/10/90 CLIENT PROJECT # : 2279-111-GW-SAMP PROJECT NAME : SO CAL CHEMICAL DATE EXTRACTED : N/A

CLIENT I.D. : SCC-EB01-007 DATE ANALYZED : 04/19/90

: UG/L ■ SAMPLE MATRIX : WATER UNITS

COMPOUNDS	RESULTS
BENZENE	<2.5
BROMODICHLOROMETHANE	<1.0
BROMOFORM	<5.0
BROMOMETHANE	<1.0
CARBON TETRACHLORIDE	<1.0
CHLOROBENZENE	<2.5
CHLOROETHANE	<1.0
CHLOROFORM	<1.0
CHLOROMETHANE	<1.0
DIBROMOCHLOROMETHANE	<1.0
1,2-DICHLOROBENZENE	<2.5
1,3-DICHLOROBENZENE	<2.5
1,4-DICHLOROBENZENE	<2.5
DICHLORODIFLUOROMETHANE	<1.0
1,1-DICHLOROETHANE	<1.0
1,2-DICHLOROETHANE	<1.0
1,1-DICHLOROETHENE	<1.0
1,2-DICHLOROETHENE (TOTAL)	<1.0
1,2-DICHLOROPROPANE	<1.0
CIS-1,3-DICHLOROPROPENE	<1.0
TRANS-1,3-DICHLOROPROPENE	<1.0
ETHYLBENZENE	<2.5
METHYLENE CHLORIDE	<10
1,1,2,2-TETRACHLOROETHANE	<1.0
TETRACHLOROETHENE	<1.0
TOLUENE	<2.5
1,1,1-TRICHLOROETHANE	<1.0
1,1,2-TRICHLOROETHANE	<1.0
TRICHLOROETHENE	<1.0
TRICHLOROFLUOROMETHANE	<10
VINYL CHLORIDE	<1.0
XYLENES (TOTAL)	<5.0
SURROGATE PERCENT RECOVERIES	
BROMOCHLOROMETHANE (%)	92
TRIFLUOROTOLUENE (%)	101

	BROMOCHLOROMETHANE (%)	92
-	TRIFLUOROTOLUENE (%)	101

ATI I.D.: 00413405

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/10/90
PROJECT # : 2279-111-GW-SAMP DATE RECEIVED : 04/10/90
PROJECT NAME : SO CAL CHEMICAL DATE EXTRACTED : N/A
CLIENT I.D. : TRIP BLANK DATE ANALYZED : 04/19/90
SAMPLE MATRIX : WATER UNITS : UG/L

	DILUTION FACTOR : 1		
COMPOUNDS	RESULTS		
BENZENE	<0.50		
BROMODICHLOROMETHANE	<0.20		
BROMOFORM-	<1.0		
BROMOMETHANE	<0.20		
CARBON TETRACHLORIDE	<0.20		
CHLOROBENZENE	<0.50		
CHLOROETHANE	<0.20		
CHLOROFORM	<0.20		
CHLOROMETHANE	<0.20		
DIBROMOCHLOROMETHANE	<0.20		
1,2-DICHLOROBENZENE	<0.50		
1,3-DICHLOROBENZENE	<0.50		
1,4-DICHLOROBENZENE	<0.50		
DICHLORODIFLUOROMETHANE	<0.20		
1,1-DICHLOROETHANE	<0.20		
1,2-DICHLOROETHANE	<0.20		
1,1-DICHLOROETHENE	<0.20		
1,2-DICHLOROETHENE (TOTAL)	<0.20		
1,2-DICHLOROPROPANE	<0.20		
CIS-1,3-DICHLOROPROPENE	<0.20		
TRANS-1,3-DICHLOROPROPENE	<0.20		
ETHYLBENZENE	<0.50		
METHYLENE CHLORIDE	<2.0		
1,1,2,2-TETRACHLOROETHANE	<0.20		
TETRACHLOROETHENE	<0.20		
TOLUENE	<0.50		
1,1,1-TRICHLOROETHANE	<0.20		
1,1,2-TRICHLOROETHANE	<0.20		
TRICHLOROETHENE	<0.20		
TRICHLOROFLUOROMETHANE	<2.0		
VINYL CHLORIDE	<0.20		
XYLENES (TOTAL)	<1.0		
SURROGATE PERCENT RECOVE	ERIES		
BROMOCHLOROMETHANE (%)	96		
MDTELLODOMOTHENE (%)	107		

BROMOCHLOROMETHANE (%)	96
 TRIFLUOROTOLUENE (%)	107

BROMOCHLOROMETHANE (%)

TRIFLUOROTOLUENE (%)

REAGENT BLANK

	TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLAT	CILI			004304
	CLIENT : CAMP DRESSER & MCKEE INCIRVINE	7	ATI I.D. DATE EXTRACTED		
	PROJECT # : 2279-111-GW-SAMP	-	DATE ANALYZED		
	PROJECT NAME : SO CAL CHEMICAL		UNITS	:	UG/L
	CLIENT I.D. : REAGENT BLANK		DILUTION FACTOR		•
-	COMPOUNDS	RES	SULTS		
	DENGENE				
	BENZENE BROMODICHLOROMETHANE	<0.			
-		<1.			
		<0.			
		<0.			
		<0.			
		<0.			
		<0.			
		<0.			
	DIBROMOCHLOROMETHANE	<0.	. 20		
	1,2-DICHLOROBENZENE	<0.	. 50		
	1,3-DICHLOROBENZENE	<0.	. 50		
-	1,4-DICHLOROBENZENE	<0.	. 50		
	DICHLORODIFLUOROMETHANE	<0.	. 20		
		<0.	20		
		<0.			
	-,	<0.			
		<0.			
	,	<0.			
		<0.			
		<0.			
		<0.			
		<2.			
	-, -, -, -	<0.			
		<0.			
		<0.			
	-/-/				
	1,1,2-TRICHLOROETHANE TRICHLOROETHENE	<0.			
		<2.			
		<0.			
		<1.			
	AIDDADO (IOIAD)	` •			
	SURROGATE PERCENT RECOVERIES		·		

92

100

REAGENT BLANK

TEST	:	EPA	8010	/8020	(HALOGENATED)	/AROMATIC	VOLATILES)	
	•		$\circ \circ \pm \circ$, 0020	(TIME OCH MATEU.	\ TI(OI,TTI T C	· · · · · · · · · · · · · · · · · · ·	,

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A
PROJECT # : 2279-111-GW-SAMP DATE ANALYZED : 04/19/90
PROJECT NAME : SO CAL CHEMICAL UNITS : UG/L

CLIENT I.D. : REAGENT BLANK DILUTION FACTOR: N/A COMPOUNDS RESULTS BENZENE < 0.50 <0.20 BROMODICHLOROMETHANE BROMOFORM <1.0 BROMOMETHANE <0.20 CARBON TETRACHLORIDE <0.20 CHLOROBENZENE <0.50 CHLOROETHANE <0.20 CHLOROFORM <0.20 CHLOROMETHANE <0.20 DIBROMOCHLOROMETHANE <0.20 1,2-DICHLOROBENZENE < 0.50 1,3-DICHLOROBENZENE < 0.50 <0.50 ■ 1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE <0.20 1,1-DICHLOROETHANE <0.20 1,2-DICHLOROETHANE <0.20 1,1-DICHLOROETHENE < 0.20 1,2-DICHLOROETHENE (TOTAL) <0.20 1,2-DICHLOROPROPANE <0.20 CIS-1,3-DICHLOROPROPENE <0.20 TRANS-1,3-DICHLOROPROPENE <0.20 ETHYLBENZENE <0.50 METHYLENE CHLORIDE <2.0 1,1,2,2-TETRACHLOROETHANE <0.20 TETRACHLOROETHENE <0.20 TOLUENE <0.50 1,1,1-TRICHLOROETHANE <0.20 1,1,2-TRICHLOROETHANE <0.20 TRICHLOROETHENE <0.20 TRICHLOROFLUOROMETHANE <2.0 VINYL CHLORIDE <0.20 XYLENES (TOTAL) <1.0 SURROGATE PERCENT RECOVERIES

BROMOCHLOROMETHANE (%)	92
TRIFLUOROTOLUENE (%)	100

QUALITY CONTROL DATA

ATI I.D. : 004134

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A

PROJECT # : 2279-111-GW-SAMP DATE ANALYZED : 04/20/90 PROJECT NAME : SO CAL CHEMICAL SAMPLE MATRIX : WATER REF I.D. : 00413505 UNITS : UG/L

COMPOUNDS	SAMPLE RESULT		SPIKED SAMPLE	% REC	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
CHLOROFORM CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE TETRACHLOROETHENE BENZENE TOLUENE	<0.50 <0.20 <0.20 <0.20 <0.50	2.00 2.00 2.00 2.30 2.00 2.00 2.00	1.4 2.2 2.2 2.4 2.2 2.1 2.2	70 110 110 104 110 105 110	2.3 2.4 2.2 2.2	85 120 115 104 110 110	19 9 4 0 0 5

% Recovery = (Spike Sample Result - Sample Result) ----- X 100 Spike Concentration

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike)
Result Sample Result

----- X 100

Average of Spiked Sample

QUALITY CONTROL DATA

ATI I.D. : 004134

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A

PROJECT # : 2279-111-GW-SAMP DATE ANALYZED : 04/19/90 PROJECT NAME : SO CAL CHEMICAL SAMPLE MATRIX : WATER

REF I.D. : 00415607 UNITS : UG/L

-	COMPOUNDS	SAMPLE RESULT	CONC. SPIKED	SPIKED SAMPLE	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
-	1,1-DICHLOROETHENE TRICHLOROETHENE TETRACHLOROETHENE BENZENE	<0.50 <0.20 <0.20 <0.20 <0.50	2.00 2.00 2.00 2.00 2.00 2.00	2.4 2.1 2.2 2.2 2.0 1.9		2.1 2.2 2.1 2.0 1.9	115 105 110 105 100 95	4 0 0 5 0
	TOLUENE	<0.50	2.00	2.0	100	2.1	105	5

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike)
Result Sample Result

----- X 100

Average of Spiked Sample

QUALITY CONTROL DATA

ATI I.D. : 004134

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A

PROJECT # : 2279-111-GW-SAMP DATE ANALYZED : 04/26/90
PROJECT NAME : SO CAL CHEMICAL SAMPLE MATRIX : WATER
REF I.D. : 00416506 UNITS : UG/L

***	COMPOUNDS			SPIKED SAMPLE	% REC	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
يت	CHLOROFORM CHLOROBENZENE	<0.20 <0.50	4.00	4.7 4.0	118 100		118 98	0 2
	1,1-DICHLOROETHENE	<0.20	4.00	4.2	105	4.1	102	2
	TRICHLOROETHENE	<0.20	4.50	4.8	107	4.8	107	0
-	TETRACHLOROETHENE	<0.20	4.00	4.2	105	4.1	102	2
-	BENZENE	<0.50	4.00	4.1	102	4.1	102	0
	TOLUENE	<0.50	4.00	4.2	105	4.2	105	0

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike)
Result Sample Result
------ X 100
Average of Spiked Sample

ATI I.D. 004149

May 1, 1990

Camp Dresser & McKee Inc. 18881 Vonkarmon, Suite 650 Irvine, California 92715

Project Name: Southern California Chemical

Project No: 2279-111-GW-SAMP

P.O. No.: 34050

Attention: Bill Grove

On April 11, 1990, Analytical Technologies, Inc. received five water samples for analyses. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The symbol for "less than" indicates a value below the reportable detection limit. Please see the attached sheet for the sample cross reference.

The results of these analyses and quality control data are enclosed.

Fitzpatrick cs Supervisor

TJF:nm

cc: E.E. Vigil

Southern California Chemical

8851 Dice Road

Santa Fe Springs, CA 90670

Richard M. Amano Laboratory Manager

ATI I.D. 004149

EPA 8020

ANALYTICAL SCHEDULE

CLIENT: CAMP DRESSER & McKEE INC. PROJECT NO.: 2279-111-GW-SAMP

PROJECT NAME: SOUTHERN CALIFORNIA CHEMICAL

AROMATIC VOLATILE GC/PID

ORGANICS

-	ANALYSIS	TECHNIQUE	REFERENCE/METHOD
	CHLORIDE CHROMIUM HEXAVALENT NITRATE AS NITROGEN	COLORIMETRIC COLORIMETRIC COLORIMETRIC	EPA 325.2 EPA 7196 EPA 353.1
_	CADMIUM CHROMIUM COPPER ZINC	ICAP ICAP ICAP ICAP	EPA 6010 EPA 6010 EPA 6010 EPA 6010
	HALOGENATED VOLATILE ORGANICS	GC/ELCD	EPA 8010

■ CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE

DATE RECEIVED: 04/11/90

PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CALIFORNIA CHEMICAL

REPORT DATE : 05/01/90

ATI I.D.: 004149

1	ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
-				
	01	SCC-MW03-007	WATER	04/11/90
	02	SCC-MW04-007	WATER	04/11/90
	03	SCC-MW31-007	WATER	04/11/90
_	04	SCC-SP01-007	WATER	04/11/90
	05	SCC-TB02-007	WATER	04/03/90

---- TOTALS ----

MATRIX # SAMPLES
----WATER 5

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ATI I.D.: 004149

: CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/11/90 CLIENT

PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CALIFORNIA CHEMICAL REPORT DATE : 05/01/90

	FRODECT NAME : 50 CALIFORNIA	CHEMICAL			REPORT D	. 05/01/50
46	PARAMETER	UNITS	01	02	03	04
	CHLORIDE CHROMIUM HEXAVALENT	MG/L MG/L	360 <0.02	1000 81.7	1020 82.3	0.91
	NITRATE AS NITROGEN	MG/L	2.6	<0.20	<0.20	-

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CALIFORNIA CHEMICAL

ATI I.D. : 004149

- PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT		RPD	SPIKED SAMPLE		% REC
CHLORIDE	MG/L	00415603		590		630	40	94
CHROMIUM HEXAVALENT NITRATE AS NITROGEN	MG/L MG/L	00414904 00414901		0.93 2.8	2 7	1.17 6.7	0.25 4.0	100 100

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) ----- X 100 Average Result

METALS RESULTS

ATI I.D.: 004149

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/11/90

PROJECT # : 2279-111-GW-SAMP

PROJECT NAME: SO CALIFORNIA CHEMICAL REPORT DATE: 05/01/90

I ROOTET NAME : DO CALITORNIA	CHEMICAL			KLFORT I	DAIL .	03/01/30
** PARAMETER	UNITS	01	02	03	04	
CADMIUM CHROMIUM	,	<0.005 <0.01		0.13 77.6	0.54 4.8	
COPPER	MG/L	<0.02	0.02	0.02	1.5	
ZINC	MG/L	<0.01	<0.01	<0.01	ا . ك	

METALS - QUALITY CONTROL

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE

PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CALIFORNIA CHEMICAL ATI I.D. : 004149

***	PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT	RPD	SPIKED SAMPLE		% REC
	CADMIUM CHROMIUM COPPER ZINC	MG/L MG/L MG/L MG/L	00413402 00413402 00413402 00414901	0.02 <0.02	<0.005 0.01 <0.02 <0.01	67 0	1.9 1.9 1.9	2.0 2.0 2.0 1.0	95 94 95 100

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result)

Average Result

ATI I.D.: 00414901

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/11/90
PROJECT # : 2279-111-GW-SAMP DATE RECEIVED : 04/11/90
PROJECT NAME : SO CALIFORNIA CHEMICAL DATE EXTRACTED : N/A
CLIENT I.D. : SCC-MW03-007 DATE ANALYZED : 04/23/90
SAMPLE MATRIX : WATER UNITS : UG/L
DILUTION FACTOR : 100

	DILUTION FACTOR: 100
COMPOUNDS	RESULTS
BENZENE	<50
BROMODICHLOROMETHANE	<20
BROMOFORM	<100
BROMOMETHANE	<20
CARBON TETRACHLORIDE	87
CHLOROBENZENE	<50
CHLOROETHANE	<20
CHLOROFORM	<20
CHLOROMETHANE	<20
DIBROMOCHLOROMETHANE	<20
1,2-DICHLOROBENZENE	<50
1,3-DICHLOROBENZENE	<50
1,4-DICHLOROBENZENE	<50
DICHLORODIFLUOROMETHANE	<20
1,1-DICHLOROETHANE	<20
1,2-DICHLOROETHANE	<20
1,1-DICHLOROETHENE	<20
1,2-DICHLOROETHENE (TOTAL)	<20
1,2-DICHLOROPROPANE	<20
CIS-1,3-DICHLOROPROPENE	<20
TRANS-1,3-DICHLOROPROPENE	<20
ETHYLBENZENE	2100
METHYLENE CHLORIDE	<200
1,1,2,2-TETRACHLOROETHANE	<20
TETRACHLOROETHENE	<20
TOLUENE	<50
1,1,1-TRICHLOROETHANE	<20
1,1,2-TRICHLOROETHANE	<20
TRICHLOROETHENE	74
TRICHLOROFLUOROMETHANE	<200
VINYL CHLORIDE	<20
XYLENES (TOTAL)	720
SURROGATE PERCENT RECOVERIES	

BROMOCHLOROMETHANE (%)	97
TRIFLUOROTOLUENE (%)	95

ATI I.D.: 00414902

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

DATE SAMPLED : 04/11/90 DATE RECEIVED : 04/11/90 DATE EXTRACTED : N/A : CAMP DRESSER & MCKEE INC.-IRVINE CLIENT ■ PROJECT # : 2279-111-GW-SAMP PROJECT NAME : SO CALIFORNIA CHEMICAL CLIENT I.D. : SCC-MW04-007 DATE ANALYZED : 04/20/90
UNITS : UG/L SAMPLE MATRIX : WATER DILUTION FACTOR: 20

COMPOUNDS	RESULTS
BENZENE	<10
BROMODICHLOROMETHANE	<4.0
BROMOFORM	. <20
BROMOMETHANE	<4.0
CARBON TETRACHLORIDE	<4.0
CHLOROBENZENE	<10
CHLOROETHANE	<4.0
CHLOROFORM	6.0
CHLOROMETHANE	<4.0
DIBROMOCHLOROMETHANE	<4.0
1,2-DICHLOROBENZENE	<10
1,3-DICHLOROBENZENE	<10
1,4-DICHLOROBENZENE	<10
DICHLORODIFLUOROMETHANE	<4.0
1,1-DICHLOROETHANE	67
1,2-DICHLOROETHANE	140
1,1-DICHLOROETHENE	35
1,2-DICHLOROETHENE (TOTAL)	<4.0
1,2-DICHLOROPROPANE	<4.0
CIS-1,3-DICHLOROPROPENE	<4.0
TRANS-1,3-DICHLOROPROPENE	<4.0
ETHYLBENZENE	<10
METHYLENE CHLORIDE	54
1,1,2,2-TETRACHLOROETHANE	<4.0
TETRACHLOROETHENE	<4.0
TOLUENE	<10
1,1,1-TRICHLOROETHANE	<4.0
1,1,2-TRICHLOROETHANE	<4.0
TRICHLOROETHENE	280
TRICHLOROFLUOROMETHANE	<40
VINYL CHLORIDE	<4.0
XYLENES (TOTAL)	<20
SURROGATE PERCENT RECOVERIES	
BROMOCHLOROMETHANE (%)	96
EDITIONOMOLUENE (%)	102

BROMOCHLOROMETHANE (%)	96
TRIFLUOROTOLUENE (%)	103

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 00414903

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

DATE SAMPLED : 04/11/90 DATE RECEIVED : 04/11/90 : CAMP DRESSER & MCKEE INC.-IRVINE CLIENT PROJECT # : 2279-111-GW-SAMP DATE EXTRACTED : N/A PROJECT NAME : SO CALIFORNIA CHEMICAL DATE ANALYZED : 04/20/90 CLIENT I.D. : SCC-MW31-007 __SAMPLE MATRIX : WATER : UG/L UNITS DILUTION FACTOR: 20

	DILUTION FACTOR : 20
COMPOUNDS	RESULTS
BENZENE	<10
BROMODICHLOROMETHANE	<4.0
BROMOFORM	<20
BROMOMETHANE	<4.0
CARBON TETRACHLORIDE	<4.0
CHLOROBENZENE	<10
CHLOROETHANE	<4.0
CHLOROFORM	6.4
CHLOROMETHANE	<4.0
DIBROMOCHLOROMETHANE	<4.0
1,2-DICHLOROBENZENE	<10
1,3-DICHLOROBENZENE	<10
1,4-DICHLOROBENZENE	<10
DICHLORODIFLUOROMETHANE	<4.0
1,1-DICHLOROETHANE	78
1,2-DICHLOROETHANE	160
1,1-DICHLOROETHENE	45
1,2-DICHLOROETHENE (TOTAL)	<4.0
1,2-DICHLOROPROPANE	<4.0
CIS-1,3-DICHLOROPROPENE	<4.0
TRANS-1,3-DICHLOROPROPENE	<4.0
ETHYLBENZENE	<10
METHYLENE CHLORIDE	58
1,1,2,2-TETRACHLOROETHANE	<4.0
TETRACHLOROETHENE	<4.0
TOLUENE	<10
1,1,1-TRICHLOROETHANE	<4.0
1,1,2-TRICHLOROETHANE	<4.0
TRICHLOROETHENE	320
TRICHLOROFLUOROMETHANE	<40
VINYL CHLORIDE	<4.0
XYLENES (TOTAL)	<20
SURROGATE PERCENT RECOVERIES	
BROMOCHLOROMETHANE (%)	99
TRIFLUOROTOLUENE (%)	107

ATI I.D.: 00414905

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/03/90
PROJECT # : 2279-111-GW-SAMP DATE RECEIVED : 04/11/90
PROJECT NAME : SO CALIFORNIA CHEMICAL DATE EXTRACTED : N/A
CLIENT I.D. : SCC-TB02-007 DATE ANALYZED : 04/23/90
SAMPLE MATRIX : WATER UNITS : UG/L
DILUTION FACTOR : 1

RESULTS COMPOUNDS <0.50 BENZENE BROMODICHLOROMETHANE <0.20 BROMOFORM <1.0 BROMOMETHANE <0.20 CARBON TETRACHLORIDE <0.20 <0.50 CHLOROBENZENE <0.20 CHLOROETHANE CHLOROFORM <0.20 <0.20 CHLOROMETHANE DIBROMOCHLOROMETHANE <0.20 1,2-DICHLOROBENZENE <0.50 1,3-DICHLOROBENZENE < 0.50 1,4-DICHLOROBENZENE <0.50 DICHLORODIFLUOROMETHANE < 0.20 1,1-DICHLOROETHANE <0.20 <0.20 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE <0.20 1,2-DICHLOROETHENE (TOTAL) <0.20 1,2-DICHLOROPROPANE <0.20 <0.20 CIS-1,3-DICHLOROPROPENE TRANS-1, 3-DICHLOROPROPENE <0.20 <0.50 ETHYLBENZENE METHYLENE CHLORIDE <2.0 1,1,2,2-TETRACHLOROETHANE <0.20 <0.20 TETRACHLOROETHENE <0.50 TOLUENE 1,1,1-TRICHLOROETHANE <0.20 1,1,2-TRICHLOROETHANE <0.20 <0.20 TRICHLOROETHENE TRICHLOROFLUOROMETHANE <2.0 <0.20 VINYL CHLORIDE XYLENES (TOTAL) <1.0 SURROGATE PERCENT RECOVERIES 3

BROMOCHLOROMETHANE (%)	103
TRIFLUOROTOLUENE (%)	105

BROMOCHLOROMETHANE (%)
TRIFLUOROTOLUENE (%)

REAGENT BLANK

***	TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATED) CLIENT: CAMP DRESSER & MCKEE INCIRVINE PROJECT #: 2279-111-GW-SAMP PROJECT NAME: SO CALIFORNIA CHEMICAL CLIENT I.D.: REAGENT BLANK	E	ATI I.D. DATE EXTRACTE DATE ANALYZED UNITS DILUTION FACT	D	: :	N/A 04/22/90 UG/L
-		RES	SULTS			
	BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROFOPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROFTLUOROMETHANE TRICHLOROFTLUOROMETHANE TRICHLOROFTLUOROMETHANE	<pre><0.</pre> <0. <0. <pre><0.</pre> <0. <pre><0.</pre> <pre><0. <pre><0.</pre> <pre><0.</pre></pre>	20 20 20 20 20 20 20 20 20 20			
	XYLENES (TOTAL)	<1.	0			
-	SURROGATE PERCENT RECOVERIES					

83 94

_TEST : EPA 8010/8020 (HALOGENATED/AROMATIC VOLA	TILE	S)		
CLIENT : CAMP DRESSER & MCKEE INCIRVIN		ATI I.D.		
		DATE ANALYZED		,
PROJECT # : 2279-111-GW-SAMP PROJECT NAME : SO CALIFORNIA CHEMICAL		UNITS	:	UG/L
CLIENT I.D. : REAGENT BLANK		DILUTION FACTOR		,
COMPOUNDS				
COMPOUNDS	RES	ULTS		
BENZENE	<0.			
BROMODICHLOROMETHANE	<0.			
■ BROMOFORM	<1.			
	<0.			
CARBON TETRACHLORIDE	<0.			
CHLOROBENZENE	<0.			
CHLOROETHANE	<0.			
CHLOROFORM	<0.			
CHLOROMETHANE	<0.			
- DIBROMOCHLOROMETHANE	<0.			
1,2-DICHLOROBENZENE	<0.			
1,3-DICHLOROBENZENE	<0.			
1,4-DICHLOROBENZENE	<0.			
DICHLORODIFLUOROMETHANE	<0.			
1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	<0.			
1,1-DICHLOROETHENE	<0.			
1,2-DICHLOROETHENE (TOTAL)	<0.			
1,2-DICHLOROPROPANE	<0.			
CIS-1,3-DICHLOROPROPENE	<0.			
TRANS-1,3-DICHLOROPROPENE	<0.			
ETHYLBENZENE	<0.			
METHYLENE CHLORIDE	<2.			
1,1,2,2-TETRACHLOROETHANE	<0.			
TETRACHLOROETHENE	<0.	20		
TOLUENE	<0.	50		•
■ 1,1,1-TRICHLOROETHANE	<0.	20		
1,1,2-TRICHLOROETHANE	<0.	20		
TRICHLOROETHENE	<0.	20		
TRICHLOROFLUOROMETHANE	<2.	0		
VINYL CHLORIDE	<0.	20		
XYLENES (TOTAL)	<1.	0		
SURROGATE PERCENT RECOVERIES				
BROMOCHLOROMETHANE (%)	92			
TRIFLUOROTOLUENE (%)	100			
TATE DOOROTODOENE (%)	100			

ATI I.D. : 004149

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

■ PROJECT # : 2279-111-GW-SAMP

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A
PROJECT # : 2279-111-GW-SAMP DATE ANALYZED : 04/26/90
PROJECT NAME : SO CALIFORNIA CHEMICAL SAMPLE MATRIX : WATER
PEF I D : 00416506 REF I.D. : 00416506 UNITS : UG/L

- COMPOUNDS	SAMPLE RESULT		SPIKED SAMPLE	% REC	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
CHLOROFORM CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE TETRACHLOROETHENE BENZENE TOLUENE	<0.20 <0.50 <0.20 <0.20 <0.20 <0.50 <0.50	4.00 4.00 4.00 4.50 4.00 4.00 4.00	4.7 4.0 4.2 4.8 4.2 4.1 4.2	118 100 105 107 105 102 105	3.9 4.1 4.8 4.1 4.1	118 98 102 107 102 102	0 2 2 0 2 0

% Recovery = (Spike Sample Result - Sample Result) ----- X 100 Spike Concentration

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike)
Result Sample Result --- X 100

ATI I.D. : 004149

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A DATE ANALYZED : 04/19/90

PROJECT NAME : SO CALIFORNIA CHEMICAL

: 2279-111-GW-SAMP

SAMPLE MATRIX : WATER

REF I.D. : 00415607

PROJECT #

UNITS : UG/L

-								
-	COMPOUNDS	SAMPLE RESULT	CONC. SPIKED	SPIKED SAMPLE	% REC	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
	CHLOROFORM	<0.20	2.00	2.4	120	2.3	115	4
	CHLOROBENZENE	<0.50	2.00	2.1	105	2.1	105	0
	1,1-DICHLOROETHENE	<0.20	2.00	2.2	110	2.2	110	0
	TRICHLOROETHENE	<0.20	2.00	2.2	110	2.1	105	5
	TETRACHLOROETHENE	<0.20	2.00	2.0	100	2.0	100	0
_	BENZENE	<0.50	2.00	1.9	95	1.9	95	0
	TOLUENE	<0.50	2.00	2.0	100	2.1	105	5

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike) Result Sample Result

---- X 100

ATI I.D. : 004149

TEST : EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

: CAMP DRESSER & MCKEE INC.-IRVINE CLIENT

DATE EXTRACTED : N/A

: 2279-111-GW-SAMP ■ PROJECT #

DATE ANALYZED : 04/20/90 SAMPLE MATRIX : WATER

PROJECT NAME : SO CALIFORNIA CHEMICAL REF I.D. : 00413505

UNITS : UG/L

—							
- COMPOUNDS	SAMPLE RESULT	CONC. SPIKED	SPIKED SAMPLE	% REC	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
CHLOROFORM CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE TETRACHLOROETHENE BENZENE	<0.20 <0.50 <0.20 <0.20 <0.20 <0.50	2.00 2.00 2.00 2.30 2.00 2.00	1.4 2.2 2.2 2.4 2.2 2.1	70 110 110 104 110	2.3 2.4 2.2	85 120 115 104 110	19 9 4 0 0
TOLUENE	<0.50	2.00	2.2	110		115	4

% Recovery = (Spike Sample Result - Sample Result) 100 Spike Concentration

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike)

Result Sample Result

--- X 100

ATI I.D.: 00414904

TEST: EPA 8020 (AROMATIC VOLATILE ORGANICS)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/11/90 - PROJECT # : 2279-111-GW-SAMP DATE RECEIVED : 04/11/90

PROJECT NAME : SO CALIFORNIA CHEMICAL DATE EXTRACTED : N/A

CLIENT I.D. : SCC-SP01-007 DATE ANALYZED : 04/20/90

SAMPLE MATRIX : WATER UNITS : UG/L

DILUTION FACTOR: 2

COMPOUNDS	RESULTS	
BENZENE TOLUENE CHLOROBENZENE ETHYLBENZENE 1,3-DICHLOROBENZENE 1,2 AND 1,4-DICHLOROBENZENE XYLENES (TOTAL)	98 101 <1.0 110 <1.0 <1.0	

SURROGATE PERCENT RECOVERIES

TRIFLUOROTOLUENE (%)

$\mathbf{T}\mathbf{F}\mathbf{C}\mathbf{T}$	•	EDA	8020	(AROMATTC	VOLATILE	ORGANICS)
11111	•		0020	(MICOLINI I C	A C TEST TITL	OMGUNTOO

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A
PROJECT # : 2279-111-GW-SAMP
PROJECT NAME : SO CALLED : N/A

DATE ANALYZED : 04/20/90 UNITS : UG/L

PROJECT NAME : SO CALIFORNIA CHEMICAL CLIENT I.D. : REAGENT BLANK DILUTION FACTOR: N/A

_	COMPOUNDS	RESULTS
-	BENZENE TOLUENE CHLOROBENZENE ETHYLBENZENE 1,3-DICHLOROBENZENE	<0.50 <0.50 <0.50 <0.50 <0.50
-	1,2 AND 1,4-DICHLOROBENZENE XYLENES (TOTAL)	<0.50 <1.0

SURROGATE PERCENT RECOVERIES

105 TRIFLUOROTOLUENE (%)

ATI I.D. : 004149

TEST : EPA 8020 (AROMATIC VOLATILE ORGANICS)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A

PROJECT # : 2279-111-GW-SAMP DATE ANALYZED : 04/16/90

PROJECT NAME: SO CALIFORNIA CHEMICAL SAMPLE MATRIX: WATER REF I.D.: 00418105 UNITS: UG/L

_	COMPOUNDS	SAMPLE	CONC.	SPIKED SAMPLE	•	SPIKED	-	RPD
		<0.50 <0.50		11 10	114 101		111 110	3

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike)

Result Sample Result

----- X 100

ATI I.D. 004165

May 8, 1990

Camp Dresser & McKee Inc. 18881 VonKarmon, Suite 650 Irvine, California 92715

Project Name: Southern California Chemical

Project No.: 2279-111-GW-SAMP

P.O.: 34050

Attention: D. Chamberlin

On April 12, 1990, Analytical Technologies, Inc. eight water samples for analyses. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The symbol for "less than" indicates a value below the reportable detection limit. Please see the attached sheet for the sample cross reference.

The results of these analyses and the quality control data are enclosed.

Timothy J/ Fitzpatrick Inorganics Supervisor

cc: E.E. Vigil

Southern California Chemical

8851 Dice Road

Santa Fe Springs, CA 90670-0118

Richard M. Amano Laboratory Manager

ATI I.D. 004165

ANALYTICAL SCHEDULE

CLIENT: CAMP DRESSER & McKEE INC. PROJECT NO.: 2279-111-GW-SAMP PROJECT NAME: SOUTHERN CALIFORNIA CHEMICAL

***	ANALYSIS	TECHNIQUE	REFERENCE/METHOD
-	CHLORIDE CHROMIUM HEXAVALENT NITRATE AS NITROGEN	COLORIMETRIC COLORIMETRIC COLORIMETRIC	EPA 325.2 EPA 7196 EPA 353.1
-	CADMIUM CHROMIUM COPPER ZINC	ICAP ICAP ICAP ICAP	EPA 6010 EPA 6010 EPA 6010
	HALOGENATED VOLATILE ORGANICS	GC/ELCD	EPA 8010
	AROMATIC VOLATILE ORGANICS	GC/PID	EPA 8020

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/12/90

PROJECT # : 2279-111-GW-SAMP
PROJECT NAME : SO CAL CHEMICAL/CDM

PROJECT NAME : SO CAL CHEMICAL/CDM REPORT DATE : 05/08/90

ATI I.D. : 004165

-				
	ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
-	01	SCC-MW04A-007	WATER	04/12/90
	02	SCC-MW10-007	WATER	04/12/90
	03	SCC-MW06B-007	WATER	04/12/90
_	04	SCC-MW30-007	WATER	04/12/90
	05	SCC-MW07-007	WATER	04/12/90
	06	SCC-EB02-007	WATER	04/12/90
	07	SCC-DIW01-007	WATER	04/12/90
	08	SCC-TB03-007	WATER	04/12/90

---- TOTALS ----

MATRIX # SAMPLES
----WATER 8

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in twenty-one (21) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ATI I.D.: 004165

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/12/90
PROJECT # : 2279-111-GW-SAMP
PROJECT NAME : SO CAL CHEMICAL/CDM REPORT DATE : 05/08/80

	PROJECT NAME : SO CAL CHEMICA	L/CDM			REPORT D	ATE :	05/08/90
شعث	PARAMETER	UNITS	01	02	03	04	05
-	CHLORIDE CHROMIUM HEXAVALENT NITRATE AS NITROGEN	MG/L MG/L MG/L	130 <0.02 5.7	195 <0.02 <0.05	90.0 <0.02 9.4	205 <0.02 <0.05	450 <0.02 5.0

Date of analysis:

Chloride 04/27/90

Chromium Hexavalent 04/13/90 Nitrate as Nitrogen 04/23/90

ATI I.D.: 004165

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/12/90

■ PROJECT # : 2279-111-GW-SAMP

PROJECT NAME: SO CAL CHEMICAL/CDM REPORT DATE: 05/08/90

نسن	PARAMETER	UNITS	06	07
	CHLORIDE CHROMIUM HEXAVALENT NITRATE AS NITROGEN	/ —		<5 <0.02 <0.05

Date of analysis:

Chloride 04/27/90 Chromium Hexavalent 04/13/90 Nitrate as Nitrogen 04/23/90

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE PROJECT # : 2279-111-GW-SAMP CLIENT

PROJECT NAME : SO CAL CHEMICAL/CDM ATI I.D.: 004165

 PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT RPI	SPIKED SAMPLE		% REC
CHLORIDE CHROMIUM HEXAVALENT NITRATE AS NITROGEN NITRATE AS NITROGEN	MG/L MG/L MG/L MG/L	00416603 00415201 00416505 00416704	<0.02 5.0	30 0 <0.02 0 5.0 0 <0.05 0	12.0	40 0.5 8.0 2.0	88 100 88 95

* % Recovery = (Spike Sample Result - Sample Result) Spike Concentration

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) ---- X 100 Average Result

ATI I.D.: 004165

: CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED: 04/12/90 CLIENT

PROJECT # : 2279-111-GW-SAMP

REPORT DATE : 05/08/90 PROJECT NAME : SO CAL CHEMICAL/CDM

		· 					
.com.	PARAMETER	UNITS	01	02	03	04	05
_	CADMIUM CHROMIUM COPPER ZINC	MG/L MG/L MG/L MG/L	<0.005 <0.01 <0.02 <0.01	<0.005 <0.01 <0.02 <0.01	<0.005 0.02 <0.02 <0.01	<0.005 <0.01 <0.02 <0.01	<0.005 <0.01 <0.02 <0.01

Date of analysis: Cadmium 04/23/90 Chromium 04/23/90 Copper 04/23/90 04/23/90 Zinc

ATI I.D. : 004165

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/12/90

■ PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CAL CHEMICAL/CDM REPORT DATE : 05/08/90

	•		
PARAMETER	UNITS		07
CADMIUM CHROMIUM COPPER ZINC	MG/L MG/L	<0.005 <0.01 <0.02 0.02	<0.01 0.04

Date of analysis:

Cadmium 04/23/90 Chromium 04/23/90 Copper 04/23/90 Zinc 04/23/90

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE

PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CAL CHEMICAL/CDM ATI I.D. : 004165

-								
PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT	RPD	SPIKED SAMPLE		% REC
CADMIUM CHROMIUM COPPER ZINC	MG/L MG/L MG/L MG/L	00416507 00416507 00416507 00416503	<0.01 0.04	<0.005 <0.01 0.03 <0.01	0 0 29 0	2.0 1.9 2.0 1.0	2.0 2.0 2.0 1.0	100 95 98 100

* % Recovery = (Spike Sample Result - Sample Result) Spike Concentration

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) ---- X 100 Average Result

ATI I.D.: 00416501

■ TEST : EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

_	(1111 0010) 0010 (111100) 111(01111110)		 ,			
-	CLIENT : CAMP DRESSER & MCKEE INCIRVINI PROJECT # : 2279-111-GW-SAMP PROJECT NAME : SO CAL CHEMICAL/CDM CLIENT I.D. : SCC-MW04A-007 SAMPLE MATRIX : WATER	Ξ	DATE REDATE EXDATE ANUNITS	CEIVED TRACTED	: : :	04/12/90 N/A 04/22/90 UG/L
	COMPOUNDS	RES	SULTS			
-	BENZENE	<0.	.50			
	BROMODICHLOROMETHANE	<0.				
	BROMOFORM	<1.				
	BROMOMETHANE	<0.	-			
	CARBON TETRACHLORIDE	<0.				
	CHLOROBENZENE	<0.				
	CHLOROETHANE	<0.				
-	CHLOROFORM	<0.	.20			
	CHLOROMETHANE	<0.	20			
	DIBROMOCHLOROMETHANE	<0.	20			
فنت	1,2-DICHLOROBENZENE	<0.	.50			
	1,3-DICHLOROBENZENE	<0.	50			
	1,4-DICHLOROBENZENE	<0.	50			
_	DICHLORODIFLUOROMETHANE	<0.	20			
_	1,1-DICHLOROETHANE	<0.	20			
	1,2-DICHLOROETHANE	<0.	20			
	1,1-DICHLOROETHENE	<0.	20			
	1,2-DICHLOROETHENE (TOTAL)	<0.	20			
	1,2-DICHLOROPROPANE	<0.	20			•
	CIS-1,3-DICHLOROPROPENE	<0.	20			
	TRANS-1,3-DICHLOROPROPENE	<0.	20			
	ETHYLBENZENE	<0.	50			
	METHYLENE CHLORIDE	<2.	0			
-		<0.				
_		<0.				
		<0.				
	1,1,1-TRICHLOROETHANE	<0.				
-	1 1 0 MD FOUL OD O DMU NUD	-0	20			

<0.20 2.7

<2.0

<0.20

<1.0

SURROGATE PERCENT RECOVERIES

BROMOCHLOROMETHANE (%)	80
TRIFLUOROTOLUENE (%)	96

1,1,2-TRICHLOROETHANE

TRICHLOROFLUOROMETHANE

TRICHLOROETHENE

VINYL CHLORIDE XYLENES (TOTAL)

ATI I.D.: 00416502

TEST : EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/12/90
PROJECT # : 2279-111-GW-SAMP DATE RECEIVED : 04/12/90 PROJECT NAME : SO CAL CHEMICAL/CDM DATE EXTRACTED : N/A DATE ANALYZED : 04/22/90 UNITS : UG/L CLIENT I.D. : SCC-MW10-007 SAMPLE MATRIX : WATER DILUTION FACTOR: 5

RESULTS BENZENE <2.5 <1.0 BROMODICHLOROMETHANE BROMOFORM <5.0 BROMOMETHANE <1.0 CARBON TETRACHLORIDE <1.0 CHLOROBENZENE <2.5 CHLOROETHANE <1.0 <1.0 CHLOROFORM CHLOROMETHANE <1.0 <1.0 DIBROMOCHLOROMETHANE: 1,2-DICHLOROBENZENE <2.5 1,3-DICHLOROBENZENE <2.5 <2.5 1,4-DICHLOROBENZENE <1.0 ■ DICHLORODIFLUOROMETHANE 4.9 1,1-DICHLOROETHANE 90 1,2-DICHLOROETHANE 5.6 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE (TOTAL) <1.0 1,2-DICHLOROPROPANE <1.0 CIS-1,3-DICHLOROPROPENE <1.0 TRANS-1,3-DICHLOROPROPENE <1.0 ETHYLBENZENE 200 <10 METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE <1.0 TETRACHLOROETHENE <1.0 TOLUENE <2.5 1,1,1-TRICHLOROETHANE <1.0 1,1,2-TRICHLOROETHANE <1.0 93 TRICHLOROETHENE <10 TRICHLOROFLUOROMETHANE VINYL CHLORIDE <1.0 XYLENES (TOTAL) <5.0 SURROGATE PERCENT RECOVERIES

BROMOCHLOROMETHANE	(%)	70
TRIFLUOROTOLUENE (%)	87

TRIFLUOROTOLUENE (%)

GAS CHROMATOGRAPHY - RESULTS

ATI I.D.: 00416503

__TEST : EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

ite	TEST: EPA 8010/8020 (HALOGENATED/ARC	DMATIC VOLATILES)	
ندمة	PROJECT # : 2279-111-GW-SAMP PROJECT NAME : SO CAL CHEMICAL/CDM CLIENT I.D. : SCC-MW06B-007 SAMPLE MATRIX : WATER	INCIRVINE DATE SAMPLED : 04/12 DATE RECEIVED : 04/12 DATE EXTRACTED : N/A DATE ANALYZED : 04/26 UNITS : UG/L DILUTION FACTOR : 5	/90 /90 /90
_	COMPOUNDS	RESULTS	
. فمص			
-	BENZENE	<2.5	
	BROMODICHLOROMETHANE	<1.0 <1.0	
	BROMOFORM BROMOMETHANE	<1.0	
	CARBON TETRACHLORIDE	<1.0	
	CHLOROBENZENE	<2.5	
	CHLOROETHANE	<1.0	
	CHLOROFORM	<1.0	
	CHLOROMETHANE	<1.0	
	DIBROMOCHLOROMETHANE	<1.0	
-	1,2-DICHLOROBENZENE	<2.5	
	1,3-DICHLOROBENZENE	<2.5	
	1,4-DICHLOROBENZENE	<2.5	
	DICHLORODIFLUOROMETHANE	<1.0	
_	1,1-DICHLOROETHANE	<1.0	
	1,2-DICHLOROETHANE	<1.0	
	1,1-DICHLOROETHENE	<1.0	
	1,2-DICHLOROETHENE (TOTAL)	<1.0	
	1,2-DICHLOROPROPANE	<1.0 <1.0	
	CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE	<1.0	
	ETHYLBENZENE	<2.5	
	METHYLENE CHLORIDE	<10	
	1,1,2,2-TETRACHLOROETHANE	<1.0	
	TETRACHLOROETHENE	5.0	
	TOLUENE	<2.5	
	1,1,1-TRICHLOROETHANE	<1.0	
· · · · ·	1,1,2-TRICHLOROETHANE	<1.0	
	TRICHLOROETHENE	61	
	TRICHLOROFLUOROMETHANE	<2.5	
منت	VINYL CHLORIDE	<1.0	
_	XYLENES (TOTAL)	<2.5	
حذيب	SURROGATE PERCENT RECOVER	RIES	
	BROMOCHLOROMETHANE (%)	111	
	mpression of the (%)	102	

103

ATI I.D.: 00416504

■ TEST : EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/12/90
PROJECT # : 2279-111-GW-SAMP DATE RECEIVED : 04/12/90
PROJECT NAME : SO CAL CHEMICAL/CDM DATE EXTRACTED : N/A
CLIENT I.D. : SCC-MW30-007 DATE ANALYZED : 04/26/90
SAMPLE MATRIX : WATER UNITS : UG/L
DILUTION FACTOR : 5

COMPOUNDS RESULTS BENZENE <2.5 BROMODICHLOROMETHANE <1.0 <1.0 BROMOFORM BROMOMETHANE <1.0 CARBON TETRACHLORIDE <1.0 <2.5 CHLOROBENZENE CHLOROETHANE <1.0 CHLOROFORM <1.0 CHLOROMETHANE <1.0 DIBROMOCHLOROMETHANE <1.0 1,2-DICHLOROBENZENE <2.5 <2.5 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE <2.5 DICHLORODIFLUOROMETHANE <1.0 1,1-DICHLOROETHANE 10 1,2-DICHLOROETHANE 120 1,1-DICHLOROETHENE . 5 1,2-DICHLOROETHENE (TOTAL) <1.0 1,2-DICHLOROPROPANE <1.0 CIS-1,3-DICHLOROPROPENE <1.0 ■ TRANS-1,3-DICHLOROPROPENE <1.0 ETHYLBENZENE 700 <10 METHYLENE CHLORIDE <1.0 1,1,2,2-TETRACHLOROETHANE <1.0 TETRACHLOROETHENE <2.5 TOLUENE 1,1,1-TRICHLOROETHANE <1.0 1,1,2-TRICHLOROETHANE <1.0 TRICHLOROETHENE 87 TRICHLOROFLUOROMETHANE <2.5 VINYL CHLORIDE <1.0 <2.5 XYLENES (TOTAL) SURROGATE PERCENT RECOVERIES BROMOCHLOROMETHANE (%) 110 TRIFLUOROTOLUENE (%) 104

BROMOCHLOROMETHANE (%)

TRIFLUOROTOLUENE (%)

GAS CHROMATOGRAPHY - RESULTS

ATI I.D.: 00416505

__TEST : EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKE PROJECT # : 2279-111-GW-SAMP PROJECT NAME : SO CAL CHEMICAL/CDM CLIENT I.D. : SCC-MW07-007 SAMPLE MATRIX : WATER	DILUTION FACTOR: 5
COMPOUNDS	RESULTS
BENZENE	<2.5
BROMODICHLOROMETHANE	<1.0
BROMOFORM	<5.0
BROMOMETHANE	<1.0
CARBON TETRACHLORIDE	<1.0
CHLOROBENZENE	<2.5
CHLOROETHANE	<1.0
- CHLOROFORM	<1.0
CHLOROMETHANE	<1.0
DIBROMOCHLOROMETHANE	<1.0
■ 1,2-DICHLOROBENZENE	<2.5
1,3-DICHLOROBENZENE	<2.5
1,4-DICHLOROBENZENE	<2.5
DICHLORODIFLUOROMETHANE	<1.0
1,1-DICHLOROETHANE	3.7
1,2-DICHLOROETHANE	<1.0
1,1-DICHLOROETHENE	<1.0
= 1,2-DICHLOROETHENE (TOTAL)	1.2
1,2-DICHLOROPROPANE	<1.0
CIS-1,3-DICHLOROPROPENE	<1.0
TRANS-1,3-DICHLOROPROPENE	<1.0
ETHYLBENZENE	<2.5
METHYLENE CHLORIDE	<10
1,1,2,2-TETRACHLOROETHANE	<1.0
TETRACHLOROETHENE TOLUENE	<1.0 <2.5
1,1,1-TRICHLOROETHANE	<1.0
= 1,1,2-TRICHLOROETHANE	<1.0
TRICHLOROETHENE	46
TRICHLOROFIUOROMETHANE	<10
VINYL CHLORIDE	<1.0
XYLENES (TOTAL)	<5.0
	10.0
SURROGATE PERCENT RECOVE	ERIES

95

97

ATI I.D.: 00416506

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/12/90
PROJECT # : 2279-111-GW-SAMP DATE RECEIVED : 04/12/90
PROJECT NAME : SO CAL CHEMICAL/CDM DATE EXTRACTED : N/A
CLIENT I.D. : SCC-EB02-007 DATE ANALYZED : 04/23/90
SAMPLE MATRIX : WATER UNITS : UG/L

DILUTION FACTOR: 1

	DILOTION FACTOR: 1		
COMPOUNDS	RESULTS		
BENZENE	<0.50		
BROMODICHLOROMETHANE	<0.20		
BROMOFORM	<1.0		
BROMOMETHANE	<0.20		
CARBON TETRACHLORIDE	<0.20		
CHLOROBENZENE	<0.50		
CHLOROETHANE	<0.20		
CHLOROFORM	<0.20		
CHLOROMETHANE	<0.20		
DIBROMOCHLOROMETHANE	<0.20		
1,2-DICHLOROBENZENE	<0.50		
1,3-DICHLOROBENZENE	<0.50		
1,4-DICHLOROBENZENE	<0.50		
DICHLORODIFLUOROMETHANE	<0.20		
1,1-DICHLOROETHANE	<0.20		
1,2-DICHLOROETHANE	<0.20		
1,1-DICHLOROETHENE	<0.20		
1,2-DICHLOROETHENE (TOTAL)	<0.20		
1,2-DICHLOROPROPANE	<0.20		
CIS-1,3-DICHLOROPROPENE	<0.20		
TRANS-1,3-DICHLOROPROPENE	<0.20		
ETHYLBENZENE	<0.50		
METHYLENE CHLORIDE	<2.0		
1,1,2,2-TETRACHLOROETHANE	<0.20		
TETRACHLOROETHENE	<0.20		
TOLUENE	<0.50		
1,1,1-TRICHLOROETHANE	<0.20		
1,1,2-TRICHLOROETHANE	<0.20		
TRICHLOROETHENE	<0.20		
TRICHLOROFLUOROMETHANE	<2.0		
VINYL CHLORIDE	<0.20		
XYLENES (TOTAL)	<1.0		
SURROGATE PERCENT RECOVI	ERIES		
BROMOCHLOROMETHANE (%)	96		
TRIFLUOROTOLUENE (%)	99		
\ - /			

ATI I.D.: 00416507

TEST : EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

		:	CAMP DRESSER & MCKEE INCIRVINE	DATE	SAMPLED	:	04/12/90
-	PROJECT #	:	2279-111-GW-SAMP	DATE	RECEIVED	:	04/12/90
		:	SO CAL CHEMICAL/CDM	DATE	EXTRACTED	:	N/A
	CLIENT I.D.	:	SCC-DIW01-007	DATE	ANALYZED	:	04/23/90
	SAMPLE MATRIX	:	WATER	UNITS	3	:	UG/L
فعد				DITTI	DION EXCHOD		1

DILUTION FACTOR : 1 COMPOUNDS RESULTS BENZENE <0.50 BROMODICHLOROMETHANE <0.20 BROMOFORM <1.0 BROMOMETHANE <0.20 CARBON TETRACHLORIDE <0.20 CHLOROBENZENE <0.50 __ CHLOROETHANE <0.20 CHLOROFORM <0.20 CHLOROMETHANE <0.20 DIBROMOCHLOROMETHANE <0.20 1,2-DICHLOROBENZENE <0.50 1,3-DICHLOROBENZENE <0.50 1,4-DICHLOROBENZENE <0.50 DICHLORODIFLUOROMETHANE <0.20 1,1-DICHLOROETHANE <0.20 1,2-DICHLOROETHANE <0.20 1,1-DICHLOROETHENE <0.20 1,2-DICHLOROETHENE (TOTAL) <0.20 1,2-DICHLOROPROPANE <0.20 CIS-1,3-DICHLOROPROPENE <0.20 TRANS-1,3-DICHLOROPROPENE <0.20 ETHYLBENZENE <0.50 METHYLENE CHLORIDE <2.0 1,1,2,2-TETRACHLOROETHANE <0.20 TETRACHLOROETHENE <0.20 TOLUENE <0.50 1,1,1-TRICHLOROETHANE <0.20 1,1,2-TRICHLOROETHANE <0.20 TRICHLOROETHENE <0.20 TRICHLOROFLUOROMETHANE <2.0 VINYL CHLORIDE <0.20 XYLENES (TOTAL) <1.0 SURROGATE PERCENT RECOVERIES

BROMOCHLOROMETHANE	(%)	91
TRIFLUOROTOLUENE (%)	97

ATI I.D.: 00416508

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

	CLIENT : CAMP DRESSER & MCKER PROJECT # : 2279-111-GW-SAMP PROJECT NAME : SO CAL CHEMICAL/CDM CLIENT I.D. : SCC-TB03-007 SAMPLE MATRIX : WATER	DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 04/12/90 : 04/12/90 : N/A : 04/26/90 : UG/L : 1
	COMPOUNDS	RESULTS	
-	BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE 1,1-DICHLOROETHANE		
	1,2-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE METHYLENE CHLORIDE	<0.20 <0.20 <0.20 <0.20 <0.20 <0.50 <2.0	
•	1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE	<0.20 <0.20 3.6 <0.20 <0.20	

<2.0

<0.20

1.4

SURROGATE PERCENT RECOVERIES

BROMOCHLOROMETHANE (%)	89
TRIFLUOROTOLUENE (%)	96

TRICHLOROFLUOROMETHANE

VINYL CHLORIDE

XYLENES (TOTAL)

TFST	• 1	FDA	8010/8020	(HALOGENATED/AROMATIC	VOLATILES)
1101	• 1	LLW	0010/0020	(IIALOGENALED) AROMALIC	, ACTUALTED!

CLIENT : CAMP DRESSER & MCKEE I PROJECT # : 2279-111-GW-SAMP PROJECT NAME : SO CAL CHEMICAL/CDM CLIENT I.D. : REAGENT BLANK	ATI I.D. : 004165 INCIRVINE DATE EXTRACTED : N/A DATE ANALYZED : 04/21/90 UNITS : UG/L DILUTION FACTOR : N/A
COMPOUNDS	RESULTS
BENZENE BROMODICHLOROMETHANE	<0.50 <0.20
BROMOFORM	<0.20
BROMOMETHANE	<0.20
CARBON TETRACHLORIDE	<0.20
CHLOROBENZENE	<0.50
CHLOROETHANE	<0.20
CHLOROFORM	<0.20
CHLOROMETHANE	<0.20
DIBROMOCHLOROMETHANE	<0.20
1,2-DICHLOROBENZENE	<0.50
1,3-DICHLOROBENZENE	<0.50
1,4-DICHLOROBENZENE	<0.50
• DICHLORODIFLUOROMETHANE	<0.20
1,1-DICHLOROETHANE	<0.20
1,2-DICHLOROETHANE	<0.20
1,1-DICHLOROETHENE	<0.20 <0.20
1,2-DICHLOROETHENE (TOTAL)	<0.20
1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE	<0.20
TRANS-1,3-DICHLOROPROPENE	<0.20
ETHYLBENZENE	<0.50
METHYLENE CHLORIDE	<2.0
= 1,1,2,2-TETRACHLOROETHANE	<0.20
TETRACHLOROETHENE	<0.20
TOLUENE	<0.50
1,1,1-TRICHLOROETHANE	<0.20
1,1,2-TRICHLOROETHANE	<0.20
TRICHLOROETHENE	<0.20
TRICHLOROFLUOROMETHANE	<2.0
■ VINYL CHLORIDE	<0.20
XYLENES (TOTAL)	<1.0
SURROGATE PERCENT RECOVERING	ES
BROMOCHLOROMETHANE (%)	84
TRIFLUOROTOLUENE (%)	94
winds	

ጥፔሮጥ	י בים	0010/0020	(HALOGENATED/AROMATIC	1701 NOTTECL
TEGI	. EFA	0010/0020	(DALOGENALED) AROMALLO	VULATILICAT

CLIENT : CAMP DRE PROJECT # : 2279-111 PROJECT NAME : SO CAL CLIENT I.D. : REAGENT	SSER & MCKEE INCIRVINE -GW-SAMP HEMICAL/CDM	ATI I.D. : 004165 DATE EXTRACTED : N/A DATE ANALYZED : 04/22/90 UNITS : UG/L DILUTION FACTOR : N/A
COMPANIES		RESULTS
BENZENE		<0.50
BROMODICHLOROMETHANE	•	<0.20
BROMOFORM		<1.0
BROMOMETHANE		<0.20
CARBON TETRACHLORIDE	•	<0.20
CHLOROBENZENE	•	<0.50
CHLOROETHANE	•	<0.20
CHLOROFORM	•	<0.20
CHLOROMETHANE	•	<0.20
DIBROMOCHLOROMETHANE		0.88
1,2-DICHLOROBENZENE	•	<0.50
1,3-DICHLOROBENZENE	•	<0.50
1,4-DICHLOROBENZENE	•	<0.50
DICHLORODIFLUOROMETHANE		<0.20
1,1-DICHLOROETHANE		<0.20
1,2-DICHLOROETHANE		<0.20
1,1-DICHLOROETHENE		<0.20
1,2-DICHLOROETHENE (TOTAL	,	<0.20
1,2-DICHLOROPROPANE		<0.20
CIS-1,3-DICHLOROPROPENE		<0.20
TRANS-1,3-DICHLOROPROPENI		<0.20
ETHYLBENZENE		<0.50
METHYLENE CHLORIDE		<2.0
- 1,1,2,2-TETRACHLOROETHANI		<0.20
TETRACHLOROETHENE		<0.20
TOLUENE		<0.50
1,1,1-TRICHLOROETHANE		<0.20
1,1,2-TRICHLOROETHANE		<0.20
TRICHLOROETHENE		<0.20
TRICHLOROFLUOROMETHANE		<2.0
VINYL CHLORIDE		<0.20
XYLENES (TOTAL)	•	<1.0
SURROGATE PER	RCENT RECOVERIES	
BROMOCHLOROMETHANE (%)	s	36
TRIFLUOROTOLUENE (%)		94
TITT DOMOTODODING (9)		•

TEST	EPA	8010/8020	(HALOGENATED/AROMATIC	VOLATILES)
TEOT 6		0010/0020	(IIADOGENATED) ANOIMITE	

BROMOCHLOROMETHANE (%)

TRIFLUOROTOLUENE (%)

ATI I.D. : 004165 : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A CLIENT PROJECT # : 2279-111-GW-SAMP
PROJECT NAME : SO CAL CHEMICAL/CDM DATE ANALYZED : 04/23/90 : UG/L UNITS DILUTION FACTOR: N/A CLIENT I.D. : REAGENT BLANK COMPOUNDS RESULTS <0.50 BENZENE <0.20 BROMODICHLOROMETHANE BROMOFORM <1.0 <0.20 **BROMOMETHANE** CARBON TETRACHLORIDE <0.20 CHLOROBENZENE < 0.50 <0.20 CHLOROETHANE <0.20 CHLOROFORM <0.20 CHLOROMETHANE DIBROMOCHLOROMETHANE <0.20 <0.50 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE <0.50 <0.50 1,4-DICHLOROBENZENE <0.20 DICHLORODIFLUOROMETHANE <0.20 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE <0.20 < 0.20 1,1-DICHLOROETHENE <0.20 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE <0.20 CIS-1,3-DICHLOROPROPENE <0.20 TRANS-1,3-DICHLOROPROPENE <0.20 < 0.50 ETHYLBENZENE <2.0 METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE <0.20 TETRACHLOROETHENE <0.20 <0.50 TOLUENE <0.20 1,1,1-TRICHLOROETHANE <0.20 1,1,2-TRICHLOROETHANE <0.20 TRICHLOROETHENE TRICHLOROFLUOROMETHANE <2.0 <0.20 VINYL CHLORIDE <1.0 XYLENES (TOTAL) SURROGATE PERCENT RECOVERIES

110

113

					·
יידיביתי •	$\Delta \Delta$	2010/2020	(HALOGENATED/A		MOLATITES)
11.5.1	F. PA	8010/8020	_ (ROMATIC	VOLATILL

	TEST: EPA 8010/8020 (HALOGENATED/AROMATIC	
-	CLIENT : CAMP DRESSER & MCKEE INC PROJECT # : 2279-111-GW-SAMP PROJECT NAME : SO CAL CHEMICAL/CDM CLIENT I.D. : REAGENT BLANK	ATI I.D. : 004165 FIRVINE DATE EXTRACTED : N/A DATE ANALYZED : 04/26/90 UNITS : UG/L DILUTION FACTOR : N/A
	COMPOUNDS	DECLI TO
	BENZENE	<0.50
	BROMODICHLOROMETHANE	<0.20
	BROMOFORM	0.40
-	BROMOMETHANE	<0.20
	CARBON TETRACHLORIDE	<0.20
	CHLOROBENZENE	<0.50
سندن	CHLOROETHANE	<0.20
_	CHLOROFORM	<0.20
	CHLOROMETHANE	<0.20
	DIBROMOCHLOROMETHANE	<0.20
	1,2-DICHLOROBENZENE	<0.50
	1,3-DICHLOROBENZENE	<0.50
	1,4-DICHLOROBENZENE	<0.50
	DICHLORODIFLUOROMETHANE	<0.20
	1,1-DICHLOROETHANE	<0.20
	1,2-DICHLOROETHANE	<0.20
	1,1-DICHLOROETHENE	<0.20
-	1,2-DICHLOROETHENE (TOTAL)	<0.20
	1,2-DICHLOROPROPANE	<0.20
	CIS-1,3-DICHLOROPROPENE	<0.20
-	TRANS-1,3-DICHLOROPROPENE	<0.20
	ETHYLBENZENE	<0.50
	METHYLENE CHLORIDE	<2.0
_	1,1,2,2-TETRACHLOROETHANE	<0.20
_	TETRACHLOROETHENE	<0.20
	TOLUENE	<0.50
1.1.4	1,1,1-TRICHLOROETHANE	<0.20
-	1,1,2-TRICHLOROETHANE	<0.20
	TRICHLOROETHENE	<0.20
	TRICHLOROFLUOROMETHANE	<2.0
نيت	VINYL CHLORIDE	<0.20
	XYLENES (TOTAL)	<1.0
-	SURROGATE PERCENT RECOVERIES	
	BROMOCHLOROMETHANE (%)	103
	TRIFLUOROTOLUENE (%)	112
مت		

ATI I.D. : 004165

■ TEST : EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A

PROJECT # : 2279-111-GW-SAMP DATE ANALYZED : 04/20/90
PROJECT NAME : SO CAL CHEMICAL/CDM SAMPLE MATRIX : WATER
REF I.D. : 00413505 UNITS : UG/L

-								
_	COMPOUNDS			SPIKED SAMPLE	% REC	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
	CHLOROFORM	<0.20	2.00	1.4	70	1.7	85	19
	CHLOROBENZENE	<0.50	2.00	2.2	110	2.4	120	9
	1,1-DICHLOROETHENE	<0.20	2.00	2.2	110	2.3	115	4
	TRICHLOROETHENE	<0.20	2.30	2.4	104	2.4	104	0
	TETRACHLOROETHENE	<0.20	2.00	2.2	110	2.2	110	0
Serios	BENZENE	<0.50	2.00	2.1	105	2.2	110	5
_	TOLUENE	<0.50	2.00	2.2	110	2.3	115	4

% Recovery = (Spike Sample Result - Sample Result)
------ X 100
Spike Concentration

ATI I.D. : 004165

■ TEST : EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A

PROJECT # : 2279-111-GW-SAMP DATE ANALYZED : 04/26/90
PROJECT NAME : SO CAL CHEMICAL/CDM SAMPLE MATRIX : WATER
REF I.D. : 00416506 UNITS : UG/L

DUP. DUP. SPIKED % SAMPLE CONC. SPIKED % RESULT SPIKED SAMPLE REC.SAMPLE REC. COMPOUNDS ______ <0.20 4.00 4.7 118 4.7 0 CHLOROFORM 118 <0.50 4.00 4.0 100 3.9 98 2 CHLOROBENZENE <0.20 4.00 4.2 105 4.1 102 2 1,1-DICHLOROETHENE 107 4.8 0 <0.20 4.50 4.8 107 TRICHLOROETHENE <0.20 4.00 4.2 105 4.1
<0.50 4.00 4.1 102 4.1
<0.50 4.00 4.2 105 4.2</pre> 2 102 TETRACHLOROETHENE 0 102 BENZENE 105 105 4.2 0 TOLUENE

QUALITY CONTROL DATA

ATI I.D. : 004165

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

: CAMP DRESSER & MCKEE INC.-IRVINE CLIENT

DATE EXTRACTED : N/A

PROJECT # : 2279-111-GW-SAMP

DATE ANALYZED : 04/27/90 SAMPLE MATRIX : WATER

PROJECT NAME : SO CAL CHEMICAL/CDM REF I.D. : 00499921

: UG/L UNITS

- C	OMPOUNDS	SAMPLE RESULT		SPIKED SAMPLE	% REC	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
C T T B	HLOROFORM HLOROBENZENE ,1-DICHLOROETHENE RICHLOROETHENE ETRACHLOROETHENE ENZENE OLUENE	<0.20 <0.50 <0.20 <0.20 <0.20 <0.50 <0.50	20 20 20 20 20 20 20 20	20 21 19 23 21 23 23	100 105 95 115 105 115,	21 19 24 21 23	105 105 95 120 105 115	5 0 0 4 0 0

% Recovery = (Spike Sample Result - Sample Result) ---- X 100 Spike Concentration

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike)
Result Sample Result

100

Average of Spiked Sample

QUALITY CONTROL DATA

ATI I.D. : 004165

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A

PROJECT # : 2279-111-GW-SAMP DATE ANALYZED : 05/05/90
PROJECT NAME : SO CAL CHEMICAL/CDM SAMPLE MATRIX : WATER

REF I.D. : 00429102 UNITS : UG/L

	COMPOUNDS	SAMPLE RESULT		SPIKED SAMPLE	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
	CHLOROFORM	<0.20	4.00	4.6	115		120	4
	CHLOROBENZENE	<0.50	4.00	4.2	105	4.3	108	2
***	1,1-DICHLOROETHENE	<0.20	4.00	3.6	90	3.7	92	3
	TRICHLOROETHENE	<0.20	4.50	4.9	109	4.9	109	0
	TETRACHLOROETHENE	<0.20	4.00	4.2	105	4.2	105	0
	BENZENE	<0.50	4.00	4.2	105	4.2	105	0
•	TOLUENE	<0.50	4.00	4.0	100	4.0	100	0

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike)
Result Sample Result

----- X 100

Average of Spiked Sample

ATI I.D. 004184

May 4, 1990

Camp Dresser & McKee Inc. 18881 VonKarmon, Suite 650 Irvine, California 92715

Project Name: Southern California Chemical

Project No.: 2279-111-GW-SAMP

P.O.: 34050

Attention: Bill Grove

On April 13, 1990, Analytical Technologies, Inc. received <u>four</u> water samples for analyses. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The symbol for "less than" indicates a value below the reportable detection limit. Please see the attached sheet for the sample cross reference.

The results of these analyses and the quality control data enclosed.

tzpatrick s Supervisor

TJF:bc

cc: E.E. Vigil

Southern California Chemical

8851 Dice Road

Santa Fe Springs, CA 90670

Richard M. Amano Laboratory Manager

ATI I.D. 004184

ANALYTICAL SCHEDULE

CLIENT: CAMP DRESSER & MCKEE INC.

PROJECT NO.: 2279-111-GW-SAMP

PROJECT NAME: SOUTHERN CALIFORNIA CHEMICAL

-	ANALYSIS	TECHNIQUE	REFERENCE/METHOD
	CHLORIDE CHROMIUM HEXAVALENT NITRATE AS NITROGEN	COLORIMETRIC COLORIMETRIC COLORIMETRIC	EPA 325.2 EPA 7196 EPA 353.1
-	CADMIUM CHROMIUM COPPER ZINC	ICAP ICAP ICAP ICAP	EPA 6010 EPA 6010 EPA 6010 EPA 6010
	HALOGENATED VOLATILE ORGANICS	GC/ELCD	EPA 8010
_	AROMATIC VOLATILE ORGANICS	GC/PID	EPA 8020

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/13/90

PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CAL CHEM REPORT DATE : 05/04/90

ATI I.D. : 004184

ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01	SCC-MW08-007	WATER	04/13/90
02	SCC-MW09-007	WATER	04/13/90
03	SCC-MW05-007	WATER	04/13/90
04	SCC-TB04-007	WATER	04/13/90

---- TOTALS ----

MATRIX # SAMPLES
WATER 4

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

GENERAL CHEMISTRY RESULTS

ATI I.D.: 004184

: CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/13/90 CLIENT

PROJECT # : 2279-111-GW-SAMP
PROJECT NAME : SO CAL CHEM REPORT DATE : 05/04/90

	PROJECT NAME . SO CAL CHEM				REPORT DATE	. 05/04/50
	PARAMETER	UNITS	01	02	03	
-	CHLORIDE CHROMIUM HEXAVALENT NITRATE AS NITROGEN	MG/L MG/L MG/L	160 <0.02 4.7	250 0.80 3.5	85.0 <0.02 6.6	

Date of analysis:

Chloride 04/27/90 Chromium Hexavalent 04/13/90 Nitrate as Nitrogen 04/23/90 - CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE

PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CAL CHEM ATI I.D. : 004184

-									
	PARAMETER	UNITS	ATI I.D.		DUP. RESULT		SPIKED SAMPLE		% REC
	CHLORIDE CHROMIUM HEXAVALENT NITRATE AS NITROGEN	/ —	00418603 00415201 00418403	<0.02	50.0 <0.02 6.4	_	90 0.5 13.9	40 0.5 8.0	106 100 92

* Recovery = (Spike Sample Result - Sample Result)
----- X 100
Spike Concentration

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result)

Average Result

METALS RESULTS

ATI I.D.: 004184

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/13/90

PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CAL CHEM REPORT DATE : 05/04/90

	INCOROL MINID . DO OND OND				
-	PARAMETER	UNITS	01	02	03
-	CADMIUM CHROMIUM COPPER ZINC	MG/L MG/L	<0.005 <0.01 <0.02 0.02	0.81	<0.005 <0.01 <0.02 0.02

Date of analysis:

Cadmium 04/26/90 Chromium 04/26/90 Copper 04/26/90 Zinc 04/26/90

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE PROJECT # : 2279-111-GW-SAMP

ATI I.D.: 004184 PROJECT NAME : SO CAL CHEM

	PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT I	RPD	SPIKED SAMPLE		% REC
_	CADMIUM CHROMIUM COPPER ZINC	MG/L MG/L MG/L MG/L	00418401 00418401 00418401 00418401	<0.01 <0.02	<0.005 <0.01 <0.02 0.01	0 0 0 0	2.0 1.9 1.9 2.2	2.0 2.0 2.0 2.0	100 95 95 109

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) 100 Average Result

TRIFLUOROTOLUENE (%)

GAS CHROMATOGRAPHY - RESULTS

ATI I.D.: 00418401

_ TEST : EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/13/90
PROJECT # : 2279-111-GW-SAMP DATE RECEIVED : 04/13/90
PROJECT NAME : SO CAL CHEM DATE EXTRACTED : N/A
CLIENT I.D. : SCC-MW08-007 DATE ANALYZED : 04/26/90
SAMPLE MATRIX : WATER UNITS : UG/L
DILUTION FACTOR : 2

______ COMPOUNDS RESULTS BENZENE <1.0 BROMODICHLOROMETHANE < 0.40 < 0.40 BROMOFORM BROMOMETHANE <0.40 CARBON TETRACHLORIDE <0.40 <1.0 CHLOROBENZENE CHLOROETHANE < 0.40 CHLOROFORM <0.40 CHLOROMETHANE < 0.40 DIBROMOCHLOROMETHANE < 0.40 1,2-DICHLOROBENZENE <1.0 1,3-DICHLOROBENZENE <1.0 <1.0 1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE <0.40 1,1-DICHLOROETHANE 28 1,2-DICHLOROETHANE 0.80 1,1-DICHLOROETHENE 2.7 1,2-DICHLOROETHENE (TOTAL) 5.3 1,2-DICHLOROPROPANE <0.40 CIS-1,3-DICHLOROPROPENE <0.40 TRANS-1, 3-DICHLOROPROPENE <0.40 ETHYLBENZENE <1.0 METHYLENE CHLORIDE <4.0 <0.40 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE 1.0 <1.0 TOLUENE 1,1,1-TRICHLOROETHANE <0.40 1,1,2-TRICHLOROETHANE <0.40 TRICHLOROETHENE 17 TRICHLOROFLUOROMETHANE <4.0 < 0.40 VINYL CHLORIDE XYLENES (TOTAL) <4.0 SURROGATE PERCENT RECOVERIES 101 BROMOCHLOROMETHANE (%)

102

ATI I.D. : 00418402

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/13/90
PROJECT # : 2279-111-GW-SAMP DATE RECEIVED : 04/13/90
PROJECT NAME : SO CAL CHEM DATE EXTRACTED : N/A
CLIENT I.D. : SCC-MW09-007
SAMPLE MATRIX : WATER UNITS : UG/L
DILUTION FACTOR : 5

SAMPLE MATRIX : WATER	UNITS : UG/L DILUTION FACTOR : 5
COMPOUNDS	RESULTS
- BENZENE	<2.5
BROMODICHLOROMETHANE	<1.0
BROMOFORM	<1.0
BROMOMETHANE	<1.0
CARBON TETRACHLORIDE	<1.0
CHLOROBENZENE	<2.5
CHLOROETHANE	<1.0
- CHLOROFORM	13
CHLOROMETHANE	<1.0
DIBROMOCHLOROMETHANE	<1.0
1,2-DICHLOROBENZENE	<2.5
1,3-DICHLOROBENZENE	<2.5
1,4-DICHLOROBENZENE	<2.5
DICHLORODIFLUOROMETHANE	<1.0
- 1,1-DICHLOROETHANE	89
1,2-DICHLOROETHANE	15
1,1-DICHLOROETHENE	48
1,2-DICHLOROETHENE (TOTAL)	<1.0
1,2-DICHLOROPROPANE	<1.0
CIS-1,3-DICHLOROPROPENE	<1.0
TRANS-1,3-DICHLOROPROPENE	<1.0 <2.5
ETHYLBENZENE	<10
METHYLENE CHLORIDE	
1,1,2,2-TETRACHLOROETHANE	<1.0 2
TETRACHLOROETHENE	<2.5
TOLUENE	4
1,1,1-TRICHLOROETHANE	<1.0
1,1,2-TRICHLOROETHANE	150
TRICHLOROETHENE	<2.5
TRICHLOROFLUOROMETHANE	<1.0
VINYL CHLORIDE	<2.5
XYLENES (TOTAL)	
SURROGATE PERCENT RECOVER	IES
BROMOCHLOROMETHANE (%)	114

BROMOCHLOROMETHANE (%)	114
TRIFLUOROTOLUENE (%)	96

GAS CHROMATOGRAPHY - RESULTS

ATI I.D.: 00418403

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE SAMPLED : 04/13/90

PROJECT # : 2279-111-GW-SAMP DATE RECEIVED : 04/13/90

PROJECT NAME : SO CAL CHEM DATE EXTRACTED : N/A

CLIENT I.D. : SCC-MW05-007 DATE ANALYZED : 04/23/90

SAMPLE MATRIX : WATER UNITS : UG/L

DILUTION FACTOR: 5

	DILUTION FACTOR: 5
COMPOUNDS	RESULTS
BENZENE	<2.5
BROMODICHLOROMETHANE	<1.0
BROMOFORM	<1.0
BROMOMETHANE	<1.0
CARBON TETRACHLORIDE	120
CHLOROBENZENE	<2.5
CHLOROETHANE	<1.0
CHLOROFORM	76
CHLOROMETHANE	<1.0
DIBROMOCHLOROMETHANE	<1.0
1,2-DICHLOROBENZENE	<2.5
1,3-DICHLOROBENZENE	<2.5
1,4-DICHLOROBENZENE	<2.5
DICHLORODIFLUOROMETHANE	<1.0
1,1-DICHLOROETHANE	<1.0
1,2-DICHLOROETHANE	4.7.
1,1-DICHLOROETHENE	<1.0
1,2-DICHLOROETHENE (TOTAL)	<1.0
1,2-DICHLOROPROPANE	<1.0
CIS-1,3-DICHLOROPROPENE	<1.0
TRANS-1,3-DICHLOROPROPENE	<1.0
ETHYLBENZENE	<2.5
METHYLENE CHLORIDE	<10
1,1,2,2-TETRACHLOROETHANE	<1.0
TETRACHLOROETHENE	<1.0
TOLUENE	<2.5
1,1,1-TRICHLOROETHANE	<1.0
1,1,2-TRICHLOROETHANE	<1.0
TRICHLOROETHENE	24
TRICHLOROFLUOROMETHANE	<10
VINYL CHLORIDE	<1.0
XYLENES (TOTAL)	<5.0
, .	
SURROGATE PERCENT RECOVERIES	
BROMOCHLOROMETHANE (%)	93
TRIFLUOROTOLUENE (%)	93
• •	

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 00418404

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

DATE SAMPLED : 04/13/90 DATE RECEIVED : 04/13/90 CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE PROJECT # : 2279-111-GW-SAMP PROJECT NAME : SO CAL CHEM DATE EXTRACTED : N/A DATE ANALYZED : 04/26/90 UNITS : UG/L CLIENT I.D. : SCC-TB04-007 SAMPLE MATRIX : WATER UNITS

DILUTION FACTOR: 1

COMPOUNDS	RESULTS	
BENZENE	1.9	
BROMODICHLOROMETHANE	<0.20	
BROMOFORM	<0.20	
BROMOMETHANE	<0.20	
CARBON TETRACHLORIDE	<0.20	
CHLOROBENZENE	<0.50	
CHLOROETHANE	<0.20	
CHLOROFORM	<0.20	
CHLOROMETHANE	<0.20	
DIBROMOCHLOROMETHANE	<0.20	
1,2-DICHLOROBENZENE	<0.50	
1,3-DICHLOROBENZENE	<0.50	
1,4-DICHLOROBENZENE	<0.50	
DICHLORODIFLUOROMETHANE	<0.20	
1,1-DICHLOROETHANE	<0.20	
1,2-DICHLOROETHANE	<0.20	
1,1-DICHLOROETHENE	<0.20	
1,2-DICHLOROETHENE (TOTAL)	<0.20	
1,2-DICHLOROPROPANE	<0.20	
CIS-1,3-DICHLOROPROPENE	<0.20	
TRANS-1,3-DICHLOROPROPENE	<0.20	
ETHYLBENZENE	0.8	
METHYLENE CHLORIDE	<2.0	
1,1,2,2-TETRACHLOROETHANE	<0.20	
TETRACHLOROETHENE	<0.20	
TOLUENE	11	
1,1,1-TRICHLOROETHANE	<0.20	
1,1,2-TRICHLOROETHANE	<0.20	
TRICHLOROETHENE	<0.20	
TRICHLOROFLUOROMETHANE	<0.50	
VINYL CHLORIDE	<0.20	
XYLENES (TOTAL)	3.6	
SURROGATE PERCENT RECOVER	IES	
BROMOCHLOROMETHANE (%)	105	
TRIFLUOROTOLUENE (%)	97	

BROMOCHLOROMETHANE (%)	105
TRIFLUOROTOLUENE (%)	97

REAGENT BLANK

mpcm •	EDλ	9010/9020	(HALOGENATED/AROMATIC	TOT AUTTEC!
TEST:	LPA	8010/8020	(TALUGENATED / ARUMATIC	VOLATILES)

	TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VC	TAT.T.F			
-	CLIENT : CAMP DRESSER & MCKEE INCIRV PROJECT # : 2279-111-GW-SAMP PROJECT NAME : SO CAL CHEM CLIENT I.D. : REAGENT BLANK		ATI I.D. DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	::	N/A 04/26/90 UG/L
	COMPOUNDS	RES	SULTS		
***	BENZENE	<0.	50		
	BROMODICHLOROMETHANE	<0.	20		
	BROMOFORM	<0.			
	BROMOMETHANE	<0.	20		
	CARBON TETRACHLORIDE	<0.	20		
	CHLOROBENZENE	<0.	50		
-	CHLOROETHANE	<0.	20		
	CHLOROFORM	<0.	20		
	CHLOROMETHANE	<0.	20		
	DIBROMOCHLOROMETHANE	<0.	20		
-	1,2-DICHLOROBENZENE	<0.	50		
	1,3-DICHLOROBENZENE	<0.	50		
	1,4-DICHLOROBENZENE	<0.	50		
-	DICHLORODIFLUOROMETHANE	<0.	20		
	1,1-DICHLOROETHANE	<0.	20		
	1,2-DICHLOROETHANE	<0.	20		
	1,1-DICHLOROETHENE	<0.	20		
_	1,2-DICHLOROETHENE (TOTAL)	<0.	20		
	1,2-DICHLOROPROPANE	<0.	20		
	CIS-1,3-DICHLOROPROPENE	<0.	20		
	TRANS-1,3-DICHLOROPROPENE	<0.	20		
	ETHYLBENZENE	<0.	50		
	METHYLENE CHLORIDE	5.2			
	1,1,2,2-TETRACHLOROETHANE	<0.	20		
_	TETRACHLOROETHENE	<0.	20		
	TOLUENE	<0.	50		
	1,1,1-TRICHLOROETHANE	<0.	20		
-	1,1,2-TRICHLOROETHANE	<0.	20		
	TRICHLOROETHENE	<0.	20		

<0.50 <0.20

<0.50

SURROGATE PERCENT RECOVERIES

BROMOCHLOROMETHANE (%)	102
TRIFLUOROTOLUENE (%)	91

TRICHLOROFLUOROMETHANE

VINYL CHLORIDE

XYLENES (TOTAL)

REAGENT BLANK

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

ATI I.D. : 004184 DATE EXTRACTED : N/A

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE PROJECT # : 2279-111-GW-SAMP

DATE ANALYZED : 04/22/90 PROJECT NAME : SO CAL CHEM UNITS : UG/L CLIENT I.D. : REAGENT BLANK DILUTION FACTOR : N/A

COMPOUNDS	RESULTS
BENZENE	<0.50
BROMODICHLOROMETHANE	<0.20
BROMOFORM	0.40
BROMOMETHANE	<0.20
CARBON TETRACHLORIDE	<0.20
CHLOROBENZENE	<0.50
CHLOROETHANE	<0.20
CHLOROFORM	<0.20
CHLOROMETHANE	<0.20
DIBROMOCHLOROMETHANE	<0.20
1,2-DICHLOROBENZENE	<0.50
1,3-DICHLOROBENZENE	<0.50
1,4-DICHLOROBENZENE	<0.50
DICHLORODIFLUOROMETHANE	<0.20
1,1-DICHLOROETHANE	<0.20
1,2-DICHLOROETHANE	<0.20
1,1-DICHLOROETHENE	<0.20
1,2-DICHLOROETHENE (TOTAL)	<0.20
1,2-DICHLOROPROPANE	<0.20
CIS-1,3-DICHLOROPROPENE	<0.20
TRANS-1,3-DICHLOROPROPENE	<0.20
ETHYLBENZENE	<0.50
METHYLENE CHLORIDE	<2.0
1,1,2,2-TETRACHLOROETHANE	<0.20
TETRACHLOROETHENE	<0.20
TOLUENE	<0.50
1,1,1-TRICHLOROETHANE	<0.20
1,1,2-TRICHLOROETHANE	<0.20
TRICHLOROETHENE	<0.20
TRICHLOROFLUOROMETHANE	<2.0
VINYL CHLORIDE	<0.20
XYLENES (TOTAL)	<1.0
ALDERES (TOTAL)	\1.0
SURROGATE PERCENT RECOVERIES	3
BROMOCHLOROMETHANE (%)	86

BROMOCHLOROMETHANE	(%)	86
 TRIFLUOROTOLUENE (%)	94

QUALITY CONTROL DATA

ATI I.D. : 004184

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A

PROJECT # : 2279-111-GW-SAMP DATE ANALYZED : 04/27/90

PROJECT NAME: SO CAL CHEM SAMPLE MATRIX: WATER REF I.D.: 00499921 UNITS: UG/L

_								
-	COMPOUNDS	SAMPLE RESULT		SPIKED SAMPLE	% REC	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
444	CHLOROFORM CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE	<0.20 <0.50 <0.20 <0.20	20 20 20 20	20 21 19 23	100 105 95 115	21 19	105 105 95 120	5 0 0 4
•	TETRACHLOROETHENE BENZENE TOLUENE	<0.20 <0.50 <0.50	20 20 20	21 23 23	105 115 115	23	105 115 115	0 0 0

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike)
Result Sample Result

X 100

Average of Spiked Sample

QUALITY CONTROL DATA

ATI I.D. : 004184

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE EXTRACTED : N/A

PROJECT # : 2279-111-GW-SAMP DATE ANALYZED : 04/29/90
PROJECT NAME : SO CAL CHEM SAMPLE MATRIX : WATER

REF I.D. : 00421904 UNITS : UG/L

-	COMPOUNDS	SAMPLE RESULT	CONC. SPIKED	SPIKED SAMPLE	% REC	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
***	CHLOROFORM CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE	<0.20 <0.50 <0.20 <0.20	2.00 2.00 2.00 2.00	2.4 2.3 2.1 2.4	120 115 105 120	2.3	120 115 105 120	0 0 0 0
-	TETRACHLOROETHENE BENZENE TOLUENE	<0.20 <0.50 <0.50	2.00 2.00 2.00	2.2 2.1 2.2	110 105 110	2.0	110 100 110	0 5 0

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike)

Result Sample Result

X 100

Average of Spiked Sample

ATI I.D. 004165

May 18, 1990

MAY 2 : 1998

Camp Dresser & McKee Inc. 18881 VonKarmon, Suite 650 Irvine, California 92715

Project Name: Southern California Chemical

Project No.: 2279-111-GW-SAMP

P.O.: 34050

Attention: D. Chamberlin

Enclosed is an amended data sheet for halogenated/aromatic volatiles, reflecting a change for ethylbenzene.

We apologize for any inconvenience this may have caused you.

Fitzpatrick Inorgani/¢s Supervisor

TJF:bc/

cc: E.E. Vigil

Southern California Chemical

8851 Dice Road

Santa Fe Springs, CA 90670-0118

Richard M. Amano Laboratory Manager Analytical **Technologies,** Inc.

CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE DATE RECEIVED : 04/12/90

→ PROJECT # : 2279-111-GW-SAMP

PROJECT NAME : SO CAL CHEMICAL/CDM REPORT DATE : 05/18/90

ATI I.D.: 004165

	ATI #	CLIENT DESCRIPTION	MATRIX	DATE	COLLECTED
-	01	SCC-MW04A-007	WATER		04/12/90
	02	SCC-MW10-007	WATER		04/12/90
	03	SCC-MW06B-007	WATER		04/12/90
	04	SCC-MW30-007	WATER		04/12/90
_	05	SCC-MW07-007	WATER		04/12/90
	06	SCC-EB02-007	WATER		04/12/90
	07	SCC-DIW01-007	WATER		04/12/90
	08	SCC-TB03-007	WATER		04/12/90

---- TOTALS ----

MATRIX # SAMPLES
----WATER 8

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in twenty-one (21) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

GAS CHROMATOGRAPHY - RESULTS

ATI I.D.: 00416504

TEST: EPA 8010/8020 (HALOGENATED/AROMATIC VOLATILES)

DATE SAMPLED : 04/12/90 DATE RECEIVED : 04/12/90 CLIENT : CAMP DRESSER & MCKEE INC.-IRVINE PROJECT # : 2279-111-GW-SAMP ■ PROJECT NAME : SO CAL CHEMICAL/CDM DATE EXTRACTED : N/A DATE ANALYZED : 04/26/90 UNITS : UG/L CLIENT I.D. : SCC-MW30-007 SAMPLE MATRIX : WATER

	DILUTION FACTOR: 5
COMPOUNDS	RESULTS
BENZENE	<2.5
BROMODICHLOROMETHANE	<1.0
BROMOFORM	<1.0
BROMOMETHANE	<1.0
CARBON TETRACHLORIDE	<1.0
CHLOROBENZENE	<2.5
CHLOROETHANE	<1.0
CHLOROFORM	<1.0
CHLOROMETHANE	<1.0
DIBROMOCHLOROMETHANE	<1.0
1,2-DICHLOROBENZENE	<2.5
1,3-DICHLOROBENZENE	<2.5
1,4-DICHLOROBENZENE	<2.5
DICHLORODIFLUOROMETHANE	<1.0
1,1-DICHLOROETHANE	10
1,2-DICHLOROETHANE	120
1,1-DICHLOROETHENE	5
1,2-DICHLOROETHENE (TOTAL)	<1.0
1,2-DICHLOROPROPANE	<1.0
CIS-1,3-DICHLOROPROPENE	<1.0
TRANS-1,3-DICHLOROPROPENE	<1.0
ETHYLBENZENE	180
METHYLENE CHLORIDE	<10.
1,1,2,2-TETRACHLOROETHANE	<1.0
TETRACHLOROETHENE	<1.0
TOLUENE	<2.5
1,1,1-TRICHLOROETHANE	<1.0
1,1,2-TRICHLOROETHANE	<1.0
TRICHLOROETHENE	87 ·
TRICHLOROFLUOROMETHANE	<2.5
VINYL CHLORIDE	<1.0
XYLENES (TOTAL)	<2.5
SURROGATE PERCENT RECOVE	RIES
BROMOCHLOROMETHANE (%)	110
TRIFILIOROTOLUENE (%)	104

BROMOCHLOROMETHANE (%)	110
TRIFLUOROTOLUENE (%)	104

APPENDIX D

WCAS ANALYTICAL REPORTS

April 17, 1990

CAND IT THE REAL PORTS HE

APR 1 8 1990

SOUTHERN CALIFORNIA CHEMICAL 8851 Dice Road

Santa Fe Springs, CA 90670

Attn:

Ed Vigil

JOB NO.

15239

WEST COAST HAMINE **ANALYTICAL**

MAL ITICAL CHEMISTS

LABORATORY REPORT

Samples Received: Three (3) Liquid Samples

Date Received: 4-11-90 Purchase Order No: 34051

The samples were analyzed as follows:

Samples Analyzed	Analysis	Results
One (1) liquid	Volatile Aromatics by EPA 602	Data Sheet
One (1) liquid	Selected Metals by ICPMS	Table I
One (1) liquid	Hexavalent Chromium by EPA 7196/IC	Table II

cc: Camp, Dresser & McKee Attn: D. Chamberlin

Page 1 of 2

Michael Shelton Technical Director Northington, Ph.D. President

WEST COAST ANALYTICAL SERVICE, INC.

SOUTHERN CALIFORNIA CHEMICAL

Mr. Ed Vigil

Job # 15239 April 17, 1990

LABORATORY REPORT

TABLE I

MILLION (MS/D) CO

Parts Per Billion (ug/L)

Total Metals

Selected Metals by ICPMS

Sample ID	Cadmium	Chromium	Copper	Zinc
#3 Detection Limit	0.50 0.001	4.5 0.01	1.4 0.001	2.7 0.009
Date Analyzed:	4-16-90			

TABLE II

Parts Per Million (mg/L)

Sample ID	Hexavalent Chromium by EPA	7196/IC
#2 Detection Limit	0.94 0.001	
Date Analyzed: 4	-12-90	

Page 2 of 2

Client: SOUTHERN CALIFORNIA CHEMICAL Sample: #1

Job No: 15239

Date Matrix: Water

Analyzed: 12-Apr-90 Samp Amt: 0.5 ml Analysis: EPA 602 (8020) Dil Fact: 11

Compound	Concentration ug/L	Detection Limits
Benzene	84	2
Toluene	75	2
Chlorobenzene	ND	5
Ethylbenzene	72	2
Total Xylenes	142	2
1,3-Dichlorobenzene	ND	2
1,4-Dichlorobenzene	ND	2
1,2-Dichlorobenzene	ND	. 2

ND-Not Detected. The limit of detection is reported above.

Appendix E

APPENDIX E

COMPLETED COC FORMS

004134

· N x

Marian Van Deckog

CHAIN OF CUSTODY, RECORD

Camp Dresser & McKee Inc. 22-79- ///- GW -SAMP PROJECT NUMBER_____

Field Log Book Reference No. 2

(4/190,8:30)

								Liev	_						
689	SAMPLE NUMBER	DATE	TIME	SAMPLE LOCATION	SAMPLE TYPE	ANAL S	YSES	10/2/4/20/ 30/20/		NAME OF THE PARTY		MBER OF AINERS	LOG BOOK PG. NO.	REMARKS	
e d	SCC- MW01-007	10 Apr 90	0920	weldwal	Water	K					Z	:		10ml vod	
اک ا			1	1			X	X	X		1			Sooml poly	
3	$ullet V ig oxedsymbol{L} oldsymbol{V} ig oxedsymbol{L}$		<i>></i>							K				120Ml poll	
505	SCC - TB\$ 1-007	VOADE-90	}	Travel Blank		X					- 2	2		40 ml VO/A	
8	SCC- MW62-007		1350	well MWOZ		X					7	_		40 DVOA	
OS Seples			11	1			×	'X			2	۲,		500 me Bly	
0プ	L <i>V</i> LV L								,	X				120ml pdy	
	SCC- MW//-007		1545	well mull		X						Z		40 MUBA	
Control Cente							×	X			:	z		500 pl poly	
<u> مَعَ</u>			4	L					1	K				120 ml poky	
8	SCC- PEBBI- 007	7	1620			X					7	_		40 ml vot	
t lic								$\langle \times \rangle$	X			2		Soonl poly	
045			V		V					X L				120ml pdy	
Sample Traffic				- BY -				\pm							
Sac	Please - Put the o	atl and	Ryzed		uple	JUA	en		da	九	resul	ZS.			
5	are tes	orted-	& CD	4 4 50. CALCA	aris.			Ш							
etur	* Trace Metals	indlude	Cu,	Ert) Zn, G	a K	لـــلـِــ		1/1	il	41	meto	ilo	12/9	6per	
oc ≟ i	[0.115] 50 514 (0.01)	7 1		1 1 1	My H	190 is	-	<u>/</u>		,	tating	-13	M	Crove Thy	
Origina	SAMPLED BY (SIGN)	2/1000	1		0,00	1	rec	pr	בטין	aus,	ching	599			
δ	│	Acor	$\overline{}$	-/ mung. D	white of	-	_(((101	12	cing.	into	omin	10:0	hart med	
Ž	RELINQUISHED AY (SIGN) R	ELINQUISHED	BY (SIGN)	RELINQUISHED	BY (SIGN)		DEI IN	10111	SHE	D BY (S			111.31	IED BY (SIGN)	
LEGEND	1 XXXXX I	_	D1 (0,011)	, Incentioned	Di (Olait)	1		i QO	OI 12	<i>D D</i> . (0	,,,,,	8	1	- L	
. "	DATE/TIME (MAP) 184Z)		DATE/TIME (<u> </u>	DA1	TE/TIN	Æ (/)		DATE/TIME	446-90 18:30		
		SIGN)	RECEIVED BY (S	SIGN)	'				(SIGN)			CEIVED B			
	RECEIVED BY (SIGN) RECEIVED BY			3	J.G.1,	l	(4)	.,		(0,0,1,		(5)			
(DATE/TIME (4-1090 / 184 2) DATE/TIME (DATE/TIME (-,		TE/TI	ME (/)	1 -	DATE/TIME	(/)	
	METHOP OF SHIPMENT	SHIPPED	BY (SIGN)	RECEIVED FOR LABORATORY BY (SIGN)								DATE/TIME			

CHAIN OF CUSTODY RECORD

PROJECT NAME S. Cal Chemical

Camp Dresser & McKee Inc.

PROJECT NUMBER_____

CDM

Field Log Book Reference No. 2

SAMPLE NUMBER	DATE	TIME	SAMPLE LOCATION	SAMPLE TYPE	ANAL	YSES				NUMBER OF CONTAINERS	LOG BOOK PG. NO.	REMARKS	
SCC MW03-007	11A0490	0945	WELL MWO3	Nater	X					2		HOMI YOU	
01						X	XX	1		2		500 m 1 70 4	
		1	J	V				X		. [120 ml 10 4	
SCC TR02-007 05	11 Apen 90	7-	Terwel black	Water	X					1		40 ml vox	
5 CC MW04-007		201425	Well MWOY		$ \times $					2		40ml VOA	
						Х	xx			2		500 ml colu	
	1		1					X		1		120 M/ . 8	
SCC MW31-001	114,290	1825	Well MW31	witer						2		40 ml VOA	
			1				$\times \times$			2		, oom poly	
	1		, 31 V					X				180 M will	
(CC SFOI-007)	11 Apr 91	1210		Witter				X		2		40 ml VOA	
	1	1	1				X					500 ml ook	
	1	V		L		X						SCOMP	
Note Lab Please												(4)	
NOTE: Please put the date	angle	tu ea	4 Semple los a	le and	Dusa	SM	MA	dat	Re	ults	re		
Lepontre to CPM	1 70 (4)	Clem		<u> </u>									
Trace metally will	de Cu	Cr(T)	ZN & CL *	* 6	11/19	Ala	2 (0	01/00	12 0	6 5	Mary wi	le Notes *	
SAMPLED BY (SIGN) Emily L. Weyeng John													
RELINCUISHED BY (SIGN) RELI	NQUISHED	BY (SIGN)	RELINQUISHED	BY (SIGN)		RELING	HSILL	ED BY	SIGN)	R	ELÍÑONISI	HEO BY (SIGN)	
0 # June 2										@		V Till	
7 11 11 11	TE/TIME (/) DATE/TIME (/TIME		. 1	<u> </u>		441.4018:05th	
RECEIVED BY (SIGN) RECE	EIVED BY (SIGN)	RECEIVED BY (S	SIGN)		RECEI	ÆD B	Y (SIGN)	R	RECEIVED BY (SIGN)		
0						④		·		@			
DATE/TIME (4-11, 9,1 \$77)	TE/TIME (1) DATE/TIME (1)	DATE	TIME	(1)	DATE/TIME	(: 3.7 () () () () () () () () () (
METHOD OF SHIPMENT		Teuippen	BY (SIGN)	I DECEIVE	D FOR I	ARORA	TOR	V BV (9	(CN)	10	ATE/TIME		
Kedi Express			at the state of th	The	ish	in	10	uS			4/11/4	20.00	
				<u> </u>							4/		

004165 Camp Dresser & McKee Inc. CHAIN OF CUSTODY RECORD PROJECT NUMBER 2279-111-GW-SAMP Field Log Book Reference No. 2 PROJECT NAME S. Calif, Chlywich ANALYSES LOG SAMPLE воок TIME SAMPLE LOCATION OF REMARKS SAMPLE NUMBER DATE TYPE CONTAINERS PG. NO. 12 Apr 0930 Well MWOYA Witer SEC MWOYA 007 40 ml VOA 12 Horgo 0940 Meil MW10 MWIO MWOLB 1415 Well MWOGB MW30 007 0800 Well MW30 DA 1700 WELL MWO7 MW 07 TB03 Travel Black the date analyzed by each samply for all conclusion when a CDM 7 SCC - & TRACE METALS INGLIDE OF CO, Co, Co (Total) 3 20 A NOTE: Please put the ECONTED BUCDM SAMPLED BY (SIGN) TOLEY RELINATION BY (S)GN) RELINQUISHED BY (SIGN). RELINQUISHED BY (SIGN) RELINQUISHED BY (SIGN) RELINQUISHED BY (SIGN) DATE/TIME 4-12-80/7/80/P DATE/TIME (DATE/TIME (DATE/TIME (RECEIVED BY (SIGN) RECEIVED BY (SIGN) RECEIVED BY (SIGN) RECEIVED BY (SIGN) DATE/TIME (412-20 JUSTS DATE/TIME (DATE/TIME (DATE/TIME (DATE/TIME (SHIPPED BY (SIGN) RECEIVED FOR LABORATORY BY (SIGN) DATE/TIME Manan Van Deckoop (4/13/9017.50)

EGEND

CHAIN OF CUSTODY RECORD

LEGEND: Original: Return to Sample Traffic Control Center

PROJECT NAME S. Calif. Chemical

Camp Dresser & McKee Inc.

PROJECT NUMBER 2279-111-GW-SAMP

9282 CDM

Field Log Book Reference No. 2

	SAMPLE NUMBER	DATE	TIME	SAMPLE LOCATION	SAMPLE TYPE		SY SY					NUMBE OF CONTAINI	BO	DG OOK NO.	REMARKS
	SCC EB02 00	7 12 Apr 90	1500		Water	×				1_1_		2			40 We Voit
		}'					10	X	(X	1		2			500 ml poler
	$\vdash t J \vdash \vdash t \vdash \vdash t \vdash t \vdash t \vdash t \vdash t \vdash t \vdash $	V								X		1			120ml piley
	SCC DIWOI OC	07	0900			X						7			40nd VON
			1			- <u> -</u>		X	/ x		 	2			500 u Dorde
	-	, — 			17		+	.) /		X	 	-			500ml poly
	- 				-	\vdash	1		_	-	 				120me percy
	 	341					+			 					
			,	0 044 1 10	0. 0,		1	-		0	 		1010		2 4 - 2 - 1 - 2
	NOTE & Please on the	oare and	lysed	sy eun sample.	for all	uu	44	1201		4 KPN	deci	K-100	rites.	ar	CKE DURCED
	40 CDM 42CC			•			-	'	-		<u> </u>				
	ka-a-lb =			/W. 1 0			1-1		-	 		ļ			
1	TRACE METALS	intro		Cu, Zn C	<u> </u>		\bot	, ,		 					
			4	ייין זי		1	51	46	1	6					
						1	K	11			<u> </u>				
								1			Ĺ				
								\perp	7						
					, A										
	SAMPLED BY (SIGN)	1 -0 1	100	mb 774		>									
	\mathscr{L}	mly L.	Weg		20~	<u> </u>									
	4			<i>y</i>			•								
	RELINQUISIND BY (SIGN)	RELINQUISHED		RELINQUISHED	BY (SIGN)		REL	INQ	JISH	ED BY	(SIGN)		RELINC	UISH	ED BY (SIGN)
	1) Store	24MB 16	uu	/			4						(5)		
	DATE/TIME/2/Apr-80 5559M	DATE/TIME (/)		DATE/	TIME		/)	_	/TIME (/)
	RECEIVED BY (SIGN)	RECEIVED BY (S		RECEIVED BY (S	SIGN)		REC	CEIVI	ED B	Y (SIG	N)		RECEIV	ED B	Y (SIGN)
	144784	(2)		(3)			(4)						(5)		
	DATE/TIME (CH?-20 Sign	DATE/TIME (/) DATE/TIME (/)	· ·	DATE/	TIME	(TIME (/)
	71(20 3 17)						I			·					
	METHOD OF SHIPMENT		SHIPPED	BY (SIGN)	RECEIVED	FOR	LAB	ORA	TOR	/ BY (S	SIGN)		DATE/T	IME	
	Red Express					•		. ,		^				, ,	
	Carried				Ma	UAI	1 /	10	ñ K	Jec.	hood		14/	15/4	1,750

	CHA	IN OF CUS	YQQT	RECO	ORD	Can	np Dre	sser 8	й Мс	Keę J	nc.		.01	CDM
	PROJE	ECT NAME	o(a) (Hem		PROJ	ススプ IECT NU	7-///- MBER_	- GW	- 14	SAMP	_ [Field Log Reference	
8		SAMPLE NUMBER		DATE	TIME	SAMPLE LOCATION	SAMPLE TYPE	ANAL'	YSES		o c	NUMBER OF ONTAINER	LOG BOOK & PG. NO.	REMARKS
Semples Of	sec -	TB04 -		13A+90		Travel Blank	yster					1		40 ml VOA
€ .	SC<-	MW08 -	08		0915	WERNWOS		×	-	1		2	<u> </u>	40ml VOA
()		<i> </i>						HH	XX			7	1	Soomlysh 120 ml ply
		MW99-	007	 	1315	wel MW 09		K	11	 ~		2		40ml VOA
					Ī				XX			7		500ml Paly
	ו ע ו	L	<u> </u>		V	Ψ W4.1/ 41/ 2.7	 		_ -	X				120mg ply
e ite	SCC-	MW05 -	007_	 	1325	Well MWOS	 	K	X K			2		40ml VOA 500ml Poly
<u>§</u> 0	B-1/-1	H	 					\Box		W		-	-	120 me poly
Control Center												•		7
affic					<u> </u>					+				
ž T							1	+++	++	++-				
Sample	Plea	se put th	e date	anal	uze 6	each sample	e for	all	ana	lusa	who	n T	he de	itais
E S	ve	ported to	SCC	9 C	DM	7			$\bot \bot$					A 110
Retn		* Trace "	atellin	Ichalo	Cuc	to, Cd, Zh a	ms_	nauk	\$\\de	an	Reld	4/4	Ared	0.45 um
): Original:	SAMPLED	BY (SIGN)	P	Hy	L	, Grilly à	7. De	your						
LEGEND	RELINOU	SHED BY (SIGN)		· F	BY (SIGN	RELINQUISITED	BY (SIGN	F	RELINQU	JISHED E	BY (SIGN)	F	RELINQUISH	IED BY (SIGN)
Ä	0_2	710		13/90 E/TIME (170	DATE/TIME (4/	in GA. a.	(51)	4			_ @	DATE/TIME	, , ,
		ME (13/1-70 1630 DBY (SIGN)		IVED BY (SIGN)	RECEIVED BY (D BY (S	IGN)	- R	RECEIVED B	
	0_1	Ottoba		13/90	1700	. 3		1				_ @	D	
	DATE/TH	ME (13/490 163	9 DAT	TE/TIME .	Mysen	DATE/TIME (/)	DATE/	IME ()	DATE/TIME	, ,
	METHOD Red	OF SHIPMENT - EXPRESS			SHIPPED	BY (SIGN)	RECEIVE				(SIGN)	,	OATE/TIME	9019:5/